This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduction of a conjunct into "at most one" quantifier. For a version requiring disjoint variables, but fewer axioms, see moanimv . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 24-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | moanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | moanim | ⊢ ( ∃* 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | ibar | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 3 | 1 2 | mobid | ⊢ ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 4 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 5 | 1 4 | exlimi | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 6 | 3 5 | moanimlem | ⊢ ( ∃* 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) ) |