This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim . (Contributed by Alexander van der Vekens, 25-Jun-2017) Avoid ax-10 and ax-11 . (Revised by GG, 24-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmoanim.1 | |- F/ x ph |
|
| Assertion | rmoanim | |- ( E* x e. A ( ph /\ ps ) <-> ( ph -> E* x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoanim.1 | |- F/ x ph |
|
| 2 | impexp | |- ( ( ( ph /\ ps ) -> x = y ) <-> ( ph -> ( ps -> x = y ) ) ) |
|
| 3 | 2 | ralbii | |- ( A. x e. A ( ( ph /\ ps ) -> x = y ) <-> A. x e. A ( ph -> ( ps -> x = y ) ) ) |
| 4 | 1 | r19.21 | |- ( A. x e. A ( ph -> ( ps -> x = y ) ) <-> ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 5 | 3 4 | bitri | |- ( A. x e. A ( ( ph /\ ps ) -> x = y ) <-> ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 6 | 5 | exbii | |- ( E. y A. x e. A ( ( ph /\ ps ) -> x = y ) <-> E. y ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 7 | df-rmo | |- ( E* x e. A ( ph /\ ps ) <-> E* x ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 8 | df-mo | |- ( E* x ( x e. A /\ ( ph /\ ps ) ) <-> E. y A. x ( ( x e. A /\ ( ph /\ ps ) ) -> x = y ) ) |
|
| 9 | impexp | |- ( ( ( x e. A /\ ( ph /\ ps ) ) -> x = y ) <-> ( x e. A -> ( ( ph /\ ps ) -> x = y ) ) ) |
|
| 10 | 9 | albii | |- ( A. x ( ( x e. A /\ ( ph /\ ps ) ) -> x = y ) <-> A. x ( x e. A -> ( ( ph /\ ps ) -> x = y ) ) ) |
| 11 | df-ral | |- ( A. x e. A ( ( ph /\ ps ) -> x = y ) <-> A. x ( x e. A -> ( ( ph /\ ps ) -> x = y ) ) ) |
|
| 12 | 10 11 | bitr4i | |- ( A. x ( ( x e. A /\ ( ph /\ ps ) ) -> x = y ) <-> A. x e. A ( ( ph /\ ps ) -> x = y ) ) |
| 13 | 12 | exbii | |- ( E. y A. x ( ( x e. A /\ ( ph /\ ps ) ) -> x = y ) <-> E. y A. x e. A ( ( ph /\ ps ) -> x = y ) ) |
| 14 | 7 8 13 | 3bitri | |- ( E* x e. A ( ph /\ ps ) <-> E. y A. x e. A ( ( ph /\ ps ) -> x = y ) ) |
| 15 | df-rmo | |- ( E* x e. A ps <-> E* x ( x e. A /\ ps ) ) |
|
| 16 | df-mo | |- ( E* x ( x e. A /\ ps ) <-> E. y A. x ( ( x e. A /\ ps ) -> x = y ) ) |
|
| 17 | impexp | |- ( ( ( x e. A /\ ps ) -> x = y ) <-> ( x e. A -> ( ps -> x = y ) ) ) |
|
| 18 | 17 | albii | |- ( A. x ( ( x e. A /\ ps ) -> x = y ) <-> A. x ( x e. A -> ( ps -> x = y ) ) ) |
| 19 | df-ral | |- ( A. x e. A ( ps -> x = y ) <-> A. x ( x e. A -> ( ps -> x = y ) ) ) |
|
| 20 | 18 19 | bitr4i | |- ( A. x ( ( x e. A /\ ps ) -> x = y ) <-> A. x e. A ( ps -> x = y ) ) |
| 21 | 20 | exbii | |- ( E. y A. x ( ( x e. A /\ ps ) -> x = y ) <-> E. y A. x e. A ( ps -> x = y ) ) |
| 22 | 15 16 21 | 3bitri | |- ( E* x e. A ps <-> E. y A. x e. A ( ps -> x = y ) ) |
| 23 | 22 | imbi2i | |- ( ( ph -> E* x e. A ps ) <-> ( ph -> E. y A. x e. A ( ps -> x = y ) ) ) |
| 24 | 19.37v | |- ( E. y ( ph -> A. x e. A ( ps -> x = y ) ) <-> ( ph -> E. y A. x e. A ( ps -> x = y ) ) ) |
|
| 25 | 23 24 | bitr4i | |- ( ( ph -> E* x e. A ps ) <-> E. y ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 26 | 6 14 25 | 3bitr4i | |- ( E* x e. A ( ph /\ ps ) <-> ( ph -> E* x e. A ps ) ) |