This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcn1.1 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑋 ) | |
| rlimcn1.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| rlimcn1.3 | ⊢ ( 𝜑 → 𝐺 ⇝𝑟 𝐶 ) | ||
| rlimcn1.4 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| rlimcn1.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) | ||
| Assertion | rlimcn1 | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcn1.1 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑋 ) | |
| 2 | rlimcn1.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 3 | rlimcn1.3 | ⊢ ( 𝜑 → 𝐺 ⇝𝑟 𝐶 ) | |
| 4 | rlimcn1.4 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 5 | rlimcn1.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) | |
| 6 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑋 ) |
| 7 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 8 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑣 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑣 ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑣 = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | |
| 10 | 6 7 8 9 | fmptco | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 11 | fvexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ V ) | |
| 12 | 11 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) ∈ V ) |
| 13 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 14 | 7 3 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ⇝𝑟 𝐶 ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ⇝𝑟 𝐶 ) |
| 16 | 12 13 15 | rlimi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) ) |
| 17 | fvoveq1 | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑤 ) → ( abs ‘ ( 𝑧 − 𝐶 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) ) | |
| 18 | 17 | breq1d | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑤 ) → ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) ) |
| 19 | 18 | imbrov2fvoveq | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑤 ) → ( ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
| 20 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) | |
| 21 | 6 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑋 ) |
| 22 | 19 20 21 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
| 23 | 22 | imim2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
| 24 | 23 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
| 25 | 24 | reximdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
| 26 | 25 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − 𝐶 ) ) < 𝑦 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) ) |
| 27 | 16 26 | mpid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
| 28 | 27 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
| 29 | 5 28 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
| 31 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ℂ ) |
| 32 | 6 31 | syldan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ℂ ) |
| 33 | 32 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ℂ ) |
| 34 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐺 = 𝐴 ) |
| 35 | rlimss | ⊢ ( 𝐺 ⇝𝑟 𝐶 → dom 𝐺 ⊆ ℝ ) | |
| 36 | 3 35 | syl | ⊢ ( 𝜑 → dom 𝐺 ⊆ ℝ ) |
| 37 | 34 36 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 38 | 4 2 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 39 | 33 37 38 | rlim2 | ⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑐 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) ) |
| 40 | 30 39 | mpbird | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |
| 41 | 10 40 | eqbrtrd | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |