This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite rlim for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlim2.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| rlim2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| rlim2.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | rlim2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlim2.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| 2 | rlim2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | rlim2.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | eqid | ⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | 4 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 6 | 1 5 | sylib | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 7 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) ) | |
| 8 | 6 2 7 | rlim | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ) ) ) |
| 9 | 3 | biantrurd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ) ) ) |
| 10 | nfv | ⊢ Ⅎ 𝑧 𝑦 ≤ 𝑤 | |
| 11 | nfcv | ⊢ Ⅎ 𝑧 abs | |
| 12 | nffvmpt1 | ⊢ Ⅎ 𝑧 ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) | |
| 13 | nfcv | ⊢ Ⅎ 𝑧 − | |
| 14 | nfcv | ⊢ Ⅎ 𝑧 𝐶 | |
| 15 | 12 13 14 | nfov | ⊢ Ⅎ 𝑧 ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) |
| 16 | 11 15 | nffv | ⊢ Ⅎ 𝑧 ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) |
| 17 | nfcv | ⊢ Ⅎ 𝑧 < | |
| 18 | nfcv | ⊢ Ⅎ 𝑧 𝑥 | |
| 19 | 16 17 18 | nfbr | ⊢ Ⅎ 𝑧 ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 |
| 20 | 10 19 | nfim | ⊢ Ⅎ 𝑧 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) |
| 21 | nfv | ⊢ Ⅎ 𝑤 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) | |
| 22 | breq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑦 ≤ 𝑤 ↔ 𝑦 ≤ 𝑧 ) ) | |
| 23 | 22 | imbrov2fvoveq | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) |
| 24 | 20 21 23 | cbvralw | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) |
| 25 | 4 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = 𝐵 ) |
| 26 | 25 | fvoveq1d | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 27 | 26 | breq1d | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
| 28 | 27 | imbi2d | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 29 | 28 | ralimiaa | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 30 | ralbi | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) | |
| 31 | 1 29 30 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 32 | 24 31 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 33 | 32 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 34 | 33 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐴 ( 𝑦 ≤ 𝑤 → ( abs ‘ ( ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑤 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 35 | 8 9 34 | 3bitr2d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |