This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcn1.1 | |- ( ph -> G : A --> X ) |
|
| rlimcn1.2 | |- ( ph -> C e. X ) |
||
| rlimcn1.3 | |- ( ph -> G ~~>r C ) |
||
| rlimcn1.4 | |- ( ph -> F : X --> CC ) |
||
| rlimcn1.5 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) |
||
| Assertion | rlimcn1 | |- ( ph -> ( F o. G ) ~~>r ( F ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcn1.1 | |- ( ph -> G : A --> X ) |
|
| 2 | rlimcn1.2 | |- ( ph -> C e. X ) |
|
| 3 | rlimcn1.3 | |- ( ph -> G ~~>r C ) |
|
| 4 | rlimcn1.4 | |- ( ph -> F : X --> CC ) |
|
| 5 | rlimcn1.5 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) |
|
| 6 | 1 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. X ) |
| 7 | 1 | feqmptd | |- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 8 | 4 | feqmptd | |- ( ph -> F = ( v e. X |-> ( F ` v ) ) ) |
| 9 | fveq2 | |- ( v = ( G ` w ) -> ( F ` v ) = ( F ` ( G ` w ) ) ) |
|
| 10 | 6 7 8 9 | fmptco | |- ( ph -> ( F o. G ) = ( w e. A |-> ( F ` ( G ` w ) ) ) ) |
| 11 | fvexd | |- ( ( ( ( ph /\ x e. RR+ ) /\ y e. RR+ ) /\ w e. A ) -> ( G ` w ) e. _V ) |
|
| 12 | 11 | ralrimiva | |- ( ( ( ph /\ x e. RR+ ) /\ y e. RR+ ) -> A. w e. A ( G ` w ) e. _V ) |
| 13 | simpr | |- ( ( ( ph /\ x e. RR+ ) /\ y e. RR+ ) -> y e. RR+ ) |
|
| 14 | 7 3 | eqbrtrrd | |- ( ph -> ( w e. A |-> ( G ` w ) ) ~~>r C ) |
| 15 | 14 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ y e. RR+ ) -> ( w e. A |-> ( G ` w ) ) ~~>r C ) |
| 16 | 12 13 15 | rlimi | |- ( ( ( ph /\ x e. RR+ ) /\ y e. RR+ ) -> E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( G ` w ) - C ) ) < y ) ) |
| 17 | fvoveq1 | |- ( z = ( G ` w ) -> ( abs ` ( z - C ) ) = ( abs ` ( ( G ` w ) - C ) ) ) |
|
| 18 | 17 | breq1d | |- ( z = ( G ` w ) -> ( ( abs ` ( z - C ) ) < y <-> ( abs ` ( ( G ` w ) - C ) ) < y ) ) |
| 19 | 18 | imbrov2fvoveq | |- ( z = ( G ` w ) -> ( ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) <-> ( ( abs ` ( ( G ` w ) - C ) ) < y -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) |
| 20 | simplrr | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( y e. RR+ /\ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) ) /\ w e. A ) -> A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) |
|
| 21 | 6 | ad4ant14 | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( y e. RR+ /\ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) ) /\ w e. A ) -> ( G ` w ) e. X ) |
| 22 | 19 20 21 | rspcdva | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( y e. RR+ /\ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) ) /\ w e. A ) -> ( ( abs ` ( ( G ` w ) - C ) ) < y -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) |
| 23 | 22 | imim2d | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( y e. RR+ /\ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) ) /\ w e. A ) -> ( ( c <_ w -> ( abs ` ( ( G ` w ) - C ) ) < y ) -> ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) |
| 24 | 23 | ralimdva | |- ( ( ( ph /\ x e. RR+ ) /\ ( y e. RR+ /\ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) ) -> ( A. w e. A ( c <_ w -> ( abs ` ( ( G ` w ) - C ) ) < y ) -> A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) |
| 25 | 24 | reximdv | |- ( ( ( ph /\ x e. RR+ ) /\ ( y e. RR+ /\ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) ) -> ( E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( G ` w ) - C ) ) < y ) -> E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) |
| 26 | 25 | expr | |- ( ( ( ph /\ x e. RR+ ) /\ y e. RR+ ) -> ( A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) -> ( E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( G ` w ) - C ) ) < y ) -> E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) ) |
| 27 | 16 26 | mpid | |- ( ( ( ph /\ x e. RR+ ) /\ y e. RR+ ) -> ( A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) -> E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) |
| 28 | 27 | rexlimdva | |- ( ( ph /\ x e. RR+ ) -> ( E. y e. RR+ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) -> E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) |
| 29 | 5 28 | mpd | |- ( ( ph /\ x e. RR+ ) -> E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. x e. RR+ E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) |
| 31 | 4 | ffvelcdmda | |- ( ( ph /\ ( G ` w ) e. X ) -> ( F ` ( G ` w ) ) e. CC ) |
| 32 | 6 31 | syldan | |- ( ( ph /\ w e. A ) -> ( F ` ( G ` w ) ) e. CC ) |
| 33 | 32 | ralrimiva | |- ( ph -> A. w e. A ( F ` ( G ` w ) ) e. CC ) |
| 34 | 1 | fdmd | |- ( ph -> dom G = A ) |
| 35 | rlimss | |- ( G ~~>r C -> dom G C_ RR ) |
|
| 36 | 3 35 | syl | |- ( ph -> dom G C_ RR ) |
| 37 | 34 36 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 38 | 4 2 | ffvelcdmd | |- ( ph -> ( F ` C ) e. CC ) |
| 39 | 33 37 38 | rlim2 | |- ( ph -> ( ( w e. A |-> ( F ` ( G ` w ) ) ) ~~>r ( F ` C ) <-> A. x e. RR+ E. c e. RR A. w e. A ( c <_ w -> ( abs ` ( ( F ` ( G ` w ) ) - ( F ` C ) ) ) < x ) ) ) |
| 40 | 30 39 | mpbird | |- ( ph -> ( w e. A |-> ( F ` ( G ` w ) ) ) ~~>r ( F ` C ) ) |
| 41 | 10 40 | eqbrtrd | |- ( ph -> ( F o. G ) ~~>r ( F ` C ) ) |