This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcn1b.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑋 ) | |
| rlimcn1b.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| rlimcn1b.3 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| rlimcn1b.4 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| rlimcn1b.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) | ||
| Assertion | rlimcn1b | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcn1b.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑋 ) | |
| 2 | rlimcn1b.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 3 | rlimcn1b.3 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 4 | rlimcn1b.4 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 5 | rlimcn1b.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) | |
| 6 | 4 1 | cofmpt | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) |
| 7 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑋 ) |
| 8 | 7 2 3 4 5 | rlimcn1 | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |
| 9 | 6 8 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |