This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the limit relation for partial functions on the reals. See rlim for its relational expression. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rlim | ⊢ ⇝𝑟 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crli | ⊢ ⇝𝑟 | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | vx | ⊢ 𝑥 | |
| 3 | 1 | cv | ⊢ 𝑓 |
| 4 | cc | ⊢ ℂ | |
| 5 | cpm | ⊢ ↑pm | |
| 6 | cr | ⊢ ℝ | |
| 7 | 4 6 5 | co | ⊢ ( ℂ ↑pm ℝ ) |
| 8 | 3 7 | wcel | ⊢ 𝑓 ∈ ( ℂ ↑pm ℝ ) |
| 9 | 2 | cv | ⊢ 𝑥 |
| 10 | 9 4 | wcel | ⊢ 𝑥 ∈ ℂ |
| 11 | 8 10 | wa | ⊢ ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) |
| 12 | vy | ⊢ 𝑦 | |
| 13 | crp | ⊢ ℝ+ | |
| 14 | vz | ⊢ 𝑧 | |
| 15 | vw | ⊢ 𝑤 | |
| 16 | 3 | cdm | ⊢ dom 𝑓 |
| 17 | 14 | cv | ⊢ 𝑧 |
| 18 | cle | ⊢ ≤ | |
| 19 | 15 | cv | ⊢ 𝑤 |
| 20 | 17 19 18 | wbr | ⊢ 𝑧 ≤ 𝑤 |
| 21 | cabs | ⊢ abs | |
| 22 | 19 3 | cfv | ⊢ ( 𝑓 ‘ 𝑤 ) |
| 23 | cmin | ⊢ − | |
| 24 | 22 9 23 | co | ⊢ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) |
| 25 | 24 21 | cfv | ⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) |
| 26 | clt | ⊢ < | |
| 27 | 12 | cv | ⊢ 𝑦 |
| 28 | 25 27 26 | wbr | ⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 |
| 29 | 20 28 | wi | ⊢ ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 30 | 29 15 16 | wral | ⊢ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 31 | 30 14 6 | wrex | ⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 32 | 31 12 13 | wral | ⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 33 | 11 32 | wa | ⊢ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) |
| 34 | 33 1 2 | copab | ⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |
| 35 | 0 34 | wceq | ⊢ ⇝𝑟 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |