This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallrisefac | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 FallFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 RiseFac 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 2 | 1 | 2timesd | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 3 | 2 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑁 ) ) = ( - 1 ↑ ( 𝑁 + 𝑁 ) ) ) |
| 4 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 5 | m1expeven | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑁 ) ) = 1 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑁 ) ) = 1 ) |
| 7 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 8 | expadd | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) | |
| 9 | 7 8 | mp3an1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
| 10 | 9 | anidms | ⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
| 11 | 3 6 10 | 3eqtr3rd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
| 13 | negneg | ⊢ ( 𝑋 ∈ ℂ → - - 𝑋 = 𝑋 ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → - - 𝑋 = 𝑋 ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - - 𝑋 FallFac 𝑁 ) = ( 𝑋 FallFac 𝑁 ) ) |
| 16 | 12 15 | oveq12d | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( - - 𝑋 FallFac 𝑁 ) ) = ( 1 · ( 𝑋 FallFac 𝑁 ) ) ) |
| 17 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℂ ) | |
| 18 | 7 17 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
| 20 | negcl | ⊢ ( 𝑋 ∈ ℂ → - 𝑋 ∈ ℂ ) | |
| 21 | 20 | negcld | ⊢ ( 𝑋 ∈ ℂ → - - 𝑋 ∈ ℂ ) |
| 22 | fallfaccl | ⊢ ( ( - - 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - - 𝑋 FallFac 𝑁 ) ∈ ℂ ) | |
| 23 | 21 22 | sylan | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - - 𝑋 FallFac 𝑁 ) ∈ ℂ ) |
| 24 | 19 19 23 | mulassd | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( - - 𝑋 FallFac 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) ) |
| 25 | fallfaccl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 FallFac 𝑁 ) ∈ ℂ ) | |
| 26 | 25 | mullidd | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 1 · ( 𝑋 FallFac 𝑁 ) ) = ( 𝑋 FallFac 𝑁 ) ) |
| 27 | 16 24 26 | 3eqtr3rd | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 FallFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) ) |
| 28 | risefallfac | ⊢ ( ( - 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑋 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) | |
| 29 | 20 28 | sylan | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑋 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 RiseFac 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( - - 𝑋 FallFac 𝑁 ) ) ) ) |
| 31 | 27 30 | eqtr4d | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 FallFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 RiseFac 𝑁 ) ) ) |