This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefacval2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 + ( 𝑘 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risefacval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑛 ) ) | |
| 2 | 1zzd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℤ ) | |
| 3 | 0zd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℤ ) | |
| 4 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 5 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 9 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℕ0 ) | |
| 10 | 9 | nn0cnd | ⊢ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℂ ) |
| 11 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝐴 + 𝑛 ) ∈ ℂ ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 + 𝑛 ) ∈ ℂ ) |
| 13 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 − 1 ) → ( 𝐴 + 𝑛 ) = ( 𝐴 + ( 𝑘 − 1 ) ) ) | |
| 14 | 2 3 7 12 13 | fprodshft | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑛 ) = ∏ 𝑘 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( 𝐴 + ( 𝑘 − 1 ) ) ) |
| 15 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 16 | 15 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 + 1 ) = 1 ) |
| 17 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 18 | 1cnd | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 19 | 17 18 | npcand | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 21 | 16 20 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
| 22 | 21 | prodeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( 𝐴 + ( 𝑘 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 + ( 𝑘 − 1 ) ) ) |
| 23 | 1 14 22 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 + ( 𝑘 − 1 ) ) ) |