This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of constant terms ( k is not free in B ). (Contributed by Scott Fenton, 12-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fprodconst | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) | |
| 2 | 1 | eqcomd | ⊢ ( 𝐵 ∈ ℂ → 1 = ( 𝐵 ↑ 0 ) ) |
| 3 | prodeq1 | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 4 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
| 6 | fveq2 | ⊢ ( 𝐴 = ∅ → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ) | |
| 7 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( ♯ ‘ 𝐴 ) = 0 ) |
| 9 | 8 | oveq2d | ⊢ ( 𝐴 = ∅ → ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ↑ 0 ) ) |
| 10 | 5 9 | eqeq12d | ⊢ ( 𝐴 = ∅ → ( ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ↔ 1 = ( 𝐵 ↑ 0 ) ) ) |
| 11 | 2 10 | syl5ibrcom | ⊢ ( 𝐵 ∈ ℂ → ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) |
| 13 | eqidd | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → 𝐵 = 𝐵 ) | |
| 14 | simprl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 15 | simprr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 16 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 17 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ ) | |
| 18 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) | |
| 19 | 18 | adantl | ⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 20 | fvconst2g | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( ( ℕ × { 𝐵 } ) ‘ 𝑛 ) = 𝐵 ) | |
| 21 | 17 19 20 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ℕ × { 𝐵 } ) ‘ 𝑛 ) = 𝐵 ) |
| 22 | 13 14 15 16 21 | fprod | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( · , ( ℕ × { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 23 | expnnval | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( · , ( ℕ × { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | |
| 24 | 23 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( · , ( ℕ × { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 25 | 22 24 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) |
| 26 | 25 | expr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) |
| 27 | 26 | exlimdv | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) |
| 28 | 27 | expimpd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) |
| 29 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 31 | 12 28 30 | mpjaod | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) |