This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the variable x in the expression for "the unique x such that ps " to another variable y contained in expression B . Use reuhypd to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaxfrd.1 | ⊢ Ⅎ 𝑦 𝐶 | |
| riotaxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | ||
| riotaxfrd.3 | ⊢ ( ( 𝜑 ∧ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) | ||
| riotaxfrd.4 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| riotaxfrd.5 | ⊢ ( 𝑦 = ( ℩ 𝑦 ∈ 𝐴 𝜒 ) → 𝐵 = 𝐶 ) | ||
| riotaxfrd.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | ||
| Assertion | riotaxfrd | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaxfrd.1 | ⊢ Ⅎ 𝑦 𝐶 | |
| 2 | riotaxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 3 | riotaxfrd.3 | ⊢ ( ( 𝜑 ∧ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) | |
| 4 | riotaxfrd.4 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | riotaxfrd.5 | ⊢ ( 𝑦 = ( ℩ 𝑦 ∈ 𝐴 𝜒 ) → 𝐵 = 𝐶 ) | |
| 6 | riotaxfrd.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 7 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 8 | 7 | baib | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ 𝜓 ) ) |
| 9 | 8 | riotabiia | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ( ℩ 𝑥 ∈ 𝐴 𝜓 ) |
| 10 | 2 6 4 | reuxfr1ds | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ∈ 𝐴 𝜒 ) ) |
| 11 | riotacl2 | ⊢ ( ∃! 𝑦 ∈ 𝐴 𝜒 → ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ ∃! 𝑦 ∈ 𝐴 𝜒 ) → ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) |
| 13 | riotacl | ⊢ ( ∃! 𝑦 ∈ 𝐴 𝜒 → ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 ) | |
| 14 | nfriota1 | ⊢ Ⅎ 𝑦 ( ℩ 𝑦 ∈ 𝐴 𝜒 ) | |
| 15 | 14 1 2 4 5 | rabxfrd | ⊢ ( ( 𝜑 ∧ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) ) |
| 16 | 13 15 | sylan2 | ⊢ ( ( 𝜑 ∧ ∃! 𝑦 ∈ 𝐴 𝜒 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) ) |
| 17 | 12 16 | mpbird | ⊢ ( ( 𝜑 ∧ ∃! 𝑦 ∈ 𝐴 𝜒 ) → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 18 | 17 | ex | ⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐴 𝜒 → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
| 19 | 10 18 | sylbid | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 21 | 3 | ex | ⊢ ( 𝜑 → ( ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
| 22 | 13 21 | syl5 | ⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐴 𝜒 → 𝐶 ∈ 𝐴 ) ) |
| 23 | 10 22 | sylbid | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 → 𝐶 ∈ 𝐴 ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → 𝐶 ∈ 𝐴 ) |
| 25 | 7 | baibr | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
| 26 | 25 | reubiia | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 27 | 26 | biimpi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 → ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 29 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 30 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝜓 } | |
| 31 | 30 | nfel2 | ⊢ Ⅎ 𝑥 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } |
| 32 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) | |
| 33 | 29 31 32 | riota2f | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = 𝐶 ) ) |
| 34 | 24 28 33 | syl2anc | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = 𝐶 ) ) |
| 35 | 20 34 | mpbid | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = 𝐶 ) |
| 36 | 9 35 | eqtr3id | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐶 ) |