This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the variable x in the expression for "the unique x such that ps " to another variable y contained in expression B . Use reuhypd to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaxfrd.1 | ||
| riotaxfrd.2 | |||
| riotaxfrd.3 | |||
| riotaxfrd.4 | |||
| riotaxfrd.5 | |||
| riotaxfrd.6 | |||
| Assertion | riotaxfrd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaxfrd.1 | ||
| 2 | riotaxfrd.2 | ||
| 3 | riotaxfrd.3 | ||
| 4 | riotaxfrd.4 | ||
| 5 | riotaxfrd.5 | ||
| 6 | riotaxfrd.6 | ||
| 7 | rabid | ||
| 8 | 7 | baib | |
| 9 | 8 | riotabiia | |
| 10 | 2 6 4 | reuxfr1ds | |
| 11 | riotacl2 | ||
| 12 | 11 | adantl | |
| 13 | riotacl | ||
| 14 | nfriota1 | ||
| 15 | 14 1 2 4 5 | rabxfrd | |
| 16 | 13 15 | sylan2 | |
| 17 | 12 16 | mpbird | |
| 18 | 17 | ex | |
| 19 | 10 18 | sylbid | |
| 20 | 19 | imp | |
| 21 | 3 | ex | |
| 22 | 13 21 | syl5 | |
| 23 | 10 22 | sylbid | |
| 24 | 23 | imp | |
| 25 | 7 | baibr | |
| 26 | 25 | reubiia | |
| 27 | 26 | biimpi | |
| 28 | 27 | adantl | |
| 29 | nfcv | ||
| 30 | nfrab1 | ||
| 31 | 30 | nfel2 | |
| 32 | eleq1 | ||
| 33 | 29 31 32 | riota2f | |
| 34 | 24 28 33 | syl2anc | |
| 35 | 20 34 | mpbid | |
| 36 | 9 35 | eqtr3id |