This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specify the same property in two ways when class B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eusvobj1.1 | ⊢ 𝐵 ∈ V | |
| Assertion | eusvobj2 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusvobj1.1 | ⊢ 𝐵 ∈ V | |
| 2 | euabsn2 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑧 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } ) | |
| 3 | eleq2 | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ 𝑥 ∈ { 𝑧 } ) ) | |
| 4 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 5 | velsn | ⊢ ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 ) | |
| 6 | 3 4 5 | 3bitr3g | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ 𝑥 = 𝑧 ) ) |
| 7 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
| 8 | 7 | nfab | ⊢ Ⅎ 𝑦 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } |
| 9 | 8 | nfeq1 | ⊢ Ⅎ 𝑦 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } |
| 10 | 1 | elabrex | ⊢ ( 𝑦 ∈ 𝐴 → 𝐵 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ) |
| 11 | eleq2 | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝐵 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ 𝐵 ∈ { 𝑧 } ) ) | |
| 12 | 1 | elsn | ⊢ ( 𝐵 ∈ { 𝑧 } ↔ 𝐵 = 𝑧 ) |
| 13 | eqcom | ⊢ ( 𝐵 = 𝑧 ↔ 𝑧 = 𝐵 ) | |
| 14 | 12 13 | bitri | ⊢ ( 𝐵 ∈ { 𝑧 } ↔ 𝑧 = 𝐵 ) |
| 15 | 11 14 | bitrdi | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝐵 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ 𝑧 = 𝐵 ) ) |
| 16 | 10 15 | imbitrid | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝑦 ∈ 𝐴 → 𝑧 = 𝐵 ) ) |
| 17 | 9 16 | ralrimi | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) |
| 18 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐵 ↔ 𝑧 = 𝐵 ) ) | |
| 19 | 18 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 20 | 17 19 | syl5ibrcom | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝑥 = 𝑧 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 21 | 6 20 | sylbid | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 22 | 21 | exlimiv | ⊢ ( ∃ 𝑧 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 23 | 2 22 | sylbi | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 24 | euex | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 25 | rexn0 | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) | |
| 26 | 25 | exlimiv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) |
| 27 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 28 | 27 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 29 | 24 26 28 | 3syl | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 30 | 23 29 | impbid | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |