This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction after substituting an expression A (containing y ) for x in the formula defining the class abstraction. (Contributed by NM, 16-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabxfrd.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| rabxfrd.2 | ⊢ Ⅎ 𝑦 𝐶 | ||
| rabxfrd.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) | ||
| rabxfrd.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | ||
| rabxfrd.5 | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | ||
| Assertion | rabxfrd | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabxfrd.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| 2 | rabxfrd.2 | ⊢ Ⅎ 𝑦 𝐶 | |
| 3 | rabxfrd.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) | |
| 4 | rabxfrd.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | rabxfrd.5 | ⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) | |
| 6 | 3 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 ) ) |
| 7 | ibibr | ⊢ ( ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 → ( 𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 → ( 𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) |
| 10 | 9 | anbi1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝜒 ) ↔ ( 𝑦 ∈ 𝐷 ∧ 𝜒 ) ) ) |
| 11 | 4 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ ( 𝐴 ∈ 𝐷 ∧ 𝜒 ) ) |
| 12 | rabid | ⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ↔ ( 𝑦 ∈ 𝐷 ∧ 𝜒 ) ) | |
| 13 | 10 11 12 | 3bitr4g | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |
| 14 | 13 | rabbidva | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } } ) |
| 15 | 14 | eleq2d | ⊢ ( 𝜑 → ( 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } } ) ) |
| 16 | nfcv | ⊢ Ⅎ 𝑦 𝐷 | |
| 17 | 2 | nfel1 | ⊢ Ⅎ 𝑦 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } |
| 18 | 5 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ) |
| 19 | 1 16 17 18 | elrabf | ⊢ ( 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } } ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ) |
| 20 | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐷 ∣ 𝜒 } | |
| 21 | 1 20 | nfel | ⊢ Ⅎ 𝑦 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } |
| 22 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) | |
| 23 | 1 16 21 22 | elrabf | ⊢ ( 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } } ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |
| 24 | 15 19 23 | 3bitr3g | ⊢ ( 𝜑 → ( ( 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ) |
| 25 | pm5.32 | ⊢ ( ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ↔ ( ( 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |