This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the variable x in the expression for "the unique x such that ps " to another variable y contained in expression B . Use reuhypd to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaxfrd.1 | |- F/_ y C |
|
| riotaxfrd.2 | |- ( ( ph /\ y e. A ) -> B e. A ) |
||
| riotaxfrd.3 | |- ( ( ph /\ ( iota_ y e. A ch ) e. A ) -> C e. A ) |
||
| riotaxfrd.4 | |- ( x = B -> ( ps <-> ch ) ) |
||
| riotaxfrd.5 | |- ( y = ( iota_ y e. A ch ) -> B = C ) |
||
| riotaxfrd.6 | |- ( ( ph /\ x e. A ) -> E! y e. A x = B ) |
||
| Assertion | riotaxfrd | |- ( ( ph /\ E! x e. A ps ) -> ( iota_ x e. A ps ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaxfrd.1 | |- F/_ y C |
|
| 2 | riotaxfrd.2 | |- ( ( ph /\ y e. A ) -> B e. A ) |
|
| 3 | riotaxfrd.3 | |- ( ( ph /\ ( iota_ y e. A ch ) e. A ) -> C e. A ) |
|
| 4 | riotaxfrd.4 | |- ( x = B -> ( ps <-> ch ) ) |
|
| 5 | riotaxfrd.5 | |- ( y = ( iota_ y e. A ch ) -> B = C ) |
|
| 6 | riotaxfrd.6 | |- ( ( ph /\ x e. A ) -> E! y e. A x = B ) |
|
| 7 | rabid | |- ( x e. { x e. A | ps } <-> ( x e. A /\ ps ) ) |
|
| 8 | 7 | baib | |- ( x e. A -> ( x e. { x e. A | ps } <-> ps ) ) |
| 9 | 8 | riotabiia | |- ( iota_ x e. A x e. { x e. A | ps } ) = ( iota_ x e. A ps ) |
| 10 | 2 6 4 | reuxfr1ds | |- ( ph -> ( E! x e. A ps <-> E! y e. A ch ) ) |
| 11 | riotacl2 | |- ( E! y e. A ch -> ( iota_ y e. A ch ) e. { y e. A | ch } ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ E! y e. A ch ) -> ( iota_ y e. A ch ) e. { y e. A | ch } ) |
| 13 | riotacl | |- ( E! y e. A ch -> ( iota_ y e. A ch ) e. A ) |
|
| 14 | nfriota1 | |- F/_ y ( iota_ y e. A ch ) |
|
| 15 | 14 1 2 4 5 | rabxfrd | |- ( ( ph /\ ( iota_ y e. A ch ) e. A ) -> ( C e. { x e. A | ps } <-> ( iota_ y e. A ch ) e. { y e. A | ch } ) ) |
| 16 | 13 15 | sylan2 | |- ( ( ph /\ E! y e. A ch ) -> ( C e. { x e. A | ps } <-> ( iota_ y e. A ch ) e. { y e. A | ch } ) ) |
| 17 | 12 16 | mpbird | |- ( ( ph /\ E! y e. A ch ) -> C e. { x e. A | ps } ) |
| 18 | 17 | ex | |- ( ph -> ( E! y e. A ch -> C e. { x e. A | ps } ) ) |
| 19 | 10 18 | sylbid | |- ( ph -> ( E! x e. A ps -> C e. { x e. A | ps } ) ) |
| 20 | 19 | imp | |- ( ( ph /\ E! x e. A ps ) -> C e. { x e. A | ps } ) |
| 21 | 3 | ex | |- ( ph -> ( ( iota_ y e. A ch ) e. A -> C e. A ) ) |
| 22 | 13 21 | syl5 | |- ( ph -> ( E! y e. A ch -> C e. A ) ) |
| 23 | 10 22 | sylbid | |- ( ph -> ( E! x e. A ps -> C e. A ) ) |
| 24 | 23 | imp | |- ( ( ph /\ E! x e. A ps ) -> C e. A ) |
| 25 | 7 | baibr | |- ( x e. A -> ( ps <-> x e. { x e. A | ps } ) ) |
| 26 | 25 | reubiia | |- ( E! x e. A ps <-> E! x e. A x e. { x e. A | ps } ) |
| 27 | 26 | biimpi | |- ( E! x e. A ps -> E! x e. A x e. { x e. A | ps } ) |
| 28 | 27 | adantl | |- ( ( ph /\ E! x e. A ps ) -> E! x e. A x e. { x e. A | ps } ) |
| 29 | nfcv | |- F/_ x C |
|
| 30 | nfrab1 | |- F/_ x { x e. A | ps } |
|
| 31 | 30 | nfel2 | |- F/ x C e. { x e. A | ps } |
| 32 | eleq1 | |- ( x = C -> ( x e. { x e. A | ps } <-> C e. { x e. A | ps } ) ) |
|
| 33 | 29 31 32 | riota2f | |- ( ( C e. A /\ E! x e. A x e. { x e. A | ps } ) -> ( C e. { x e. A | ps } <-> ( iota_ x e. A x e. { x e. A | ps } ) = C ) ) |
| 34 | 24 28 33 | syl2anc | |- ( ( ph /\ E! x e. A ps ) -> ( C e. { x e. A | ps } <-> ( iota_ x e. A x e. { x e. A | ps } ) = C ) ) |
| 35 | 20 34 | mpbid | |- ( ( ph /\ E! x e. A ps ) -> ( iota_ x e. A x e. { x e. A | ps } ) = C ) |
| 36 | 9 35 | eqtr3id | |- ( ( ph /\ E! x e. A ps ) -> ( iota_ x e. A ps ) = C ) |