This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd . (Contributed by NM, 16-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuhypd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) | |
| reuhypd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) | ||
| Assertion | reuhypd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuhypd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) | |
| 2 | reuhypd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) | |
| 3 | 1 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ V ) |
| 4 | eueq | ⊢ ( 𝐵 ∈ V ↔ ∃! 𝑦 𝑦 = 𝐵 ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 𝑦 = 𝐵 ) |
| 6 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 7 | 1 6 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 = 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 8 | 7 | pm4.71rd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 = 𝐵 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) ) ) |
| 9 | 2 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) |
| 10 | 9 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) ) ) |
| 11 | 8 10 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 = 𝐵 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) ) |
| 12 | 11 | eubidv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ∃! 𝑦 𝑦 = 𝐵 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) ) |
| 13 | 5 12 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) |
| 14 | df-reu | ⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |