This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the unity element of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringurd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| ringurd.p | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | ||
| ringurd.z | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | ||
| ringurd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) | ||
| ringurd.j | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 1 ) = 𝑥 ) | ||
| Assertion | ringurd | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringurd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | ringurd.p | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | |
| 3 | ringurd.z | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | |
| 4 | ringurd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) | |
| 5 | ringurd.j | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 1 ) = 𝑥 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 9 | 6 7 8 | dfur2 | ⊢ ( 1r ‘ 𝑅 ) = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) |
| 10 | 3 1 | eleqtrd | ⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 4 5 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → · = ( .r ‘ 𝑅 ) ) |
| 14 | 13 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 15 | 14 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
| 16 | 13 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 1 ) = ( 𝑥 ( .r ‘ 𝑅 ) 1 ) ) |
| 17 | 16 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 · 1 ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ↔ ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) ) |
| 19 | 1 18 | raleqbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) ) |
| 20 | 12 19 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) |
| 21 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑒 ∈ 𝐵 ↔ 𝑒 ∈ ( Base ‘ 𝑅 ) ) ) |
| 22 | 13 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑒 · 𝑥 ) = ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 23 | 22 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑒 · 𝑥 ) = 𝑥 ↔ ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
| 24 | 13 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 𝑒 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) ) |
| 25 | 24 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 · 𝑒 ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) |
| 26 | 23 25 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ↔ ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) |
| 27 | 1 26 | raleqbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) |
| 28 | 21 27 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) ↔ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) ) |
| 29 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
| 31 | simpr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) → 𝑒 ∈ 𝐵 ) | |
| 32 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑥 = 𝑒 ) → 𝑥 = 𝑒 ) | |
| 33 | 32 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑥 = 𝑒 ) → ( 1 · 𝑥 ) = ( 1 · 𝑒 ) ) |
| 34 | 33 32 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) ∧ 𝑥 = 𝑒 ) → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝑒 ) = 𝑒 ) ) |
| 35 | 31 34 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 → ( 1 · 𝑒 ) = 𝑒 ) ) |
| 36 | 30 35 | mpd | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐵 ) → ( 1 · 𝑒 ) = 𝑒 ) |
| 37 | 36 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) ) → ( 1 · 𝑒 ) = 𝑒 ) |
| 38 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) ) → 1 ∈ 𝐵 ) |
| 39 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) | |
| 40 | oveq2 | ⊢ ( 𝑥 = 1 → ( 𝑒 · 𝑥 ) = ( 𝑒 · 1 ) ) | |
| 41 | id | ⊢ ( 𝑥 = 1 → 𝑥 = 1 ) | |
| 42 | 40 41 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( 𝑒 · 𝑥 ) = 𝑥 ↔ ( 𝑒 · 1 ) = 1 ) ) |
| 43 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑒 ) = ( 1 · 𝑒 ) ) | |
| 44 | 43 41 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 · 𝑒 ) = 𝑥 ↔ ( 1 · 𝑒 ) = 1 ) ) |
| 45 | 42 44 | anbi12d | ⊢ ( 𝑥 = 1 → ( ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ↔ ( ( 𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒 ) = 1 ) ) ) |
| 46 | 45 | rspcva | ⊢ ( ( 1 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) → ( ( 𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒 ) = 1 ) ) |
| 47 | 46 | simprd | ⊢ ( ( 1 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) → ( 1 · 𝑒 ) = 1 ) |
| 48 | 38 39 47 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) ) → ( 1 · 𝑒 ) = 1 ) |
| 49 | 37 48 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) ) → 𝑒 = 1 ) |
| 50 | 49 | ex | ⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) → 𝑒 = 1 ) ) |
| 51 | 28 50 | sylbird | ⊢ ( 𝜑 → ( ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) → 𝑒 = 1 ) ) |
| 52 | 51 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑒 ( ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) → 𝑒 = 1 ) ) |
| 53 | eleq1 | ⊢ ( 𝑒 = 1 → ( 𝑒 ∈ ( Base ‘ 𝑅 ) ↔ 1 ∈ ( Base ‘ 𝑅 ) ) ) | |
| 54 | oveq1 | ⊢ ( 𝑒 = 1 → ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1 ( .r ‘ 𝑅 ) 𝑥 ) ) | |
| 55 | 54 | eqeq1d | ⊢ ( 𝑒 = 1 → ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ↔ ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
| 56 | 55 | ovanraleqv | ⊢ ( 𝑒 = 1 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) ) |
| 57 | 53 56 | anbi12d | ⊢ ( 𝑒 = 1 → ( ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ↔ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) ) ) |
| 58 | 57 | eqeu | ⊢ ( ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) ∧ ∀ 𝑒 ( ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) → 𝑒 = 1 ) ) → ∃! 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) |
| 59 | 10 10 20 52 58 | syl121anc | ⊢ ( 𝜑 → ∃! 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) |
| 60 | 57 | iota2 | ⊢ ( ( 1 ∈ 𝐵 ∧ ∃! 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) → ( ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) ↔ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) = 1 ) ) |
| 61 | 3 59 60 | syl2anc | ⊢ ( 𝜑 → ( ( 1 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 1 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 1 ) = 𝑥 ) ) ↔ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) = 1 ) ) |
| 62 | 10 20 61 | mpbi2and | ⊢ ( 𝜑 → ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑒 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑒 ) = 𝑥 ) ) ) = 1 ) |
| 63 | 9 62 | eqtr2id | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) |