This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the unity element of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringurd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| ringurd.p | |- ( ph -> .x. = ( .r ` R ) ) |
||
| ringurd.z | |- ( ph -> .1. e. B ) |
||
| ringurd.i | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
||
| ringurd.j | |- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
||
| Assertion | ringurd | |- ( ph -> .1. = ( 1r ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringurd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | ringurd.p | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 3 | ringurd.z | |- ( ph -> .1. e. B ) |
|
| 4 | ringurd.i | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
|
| 5 | ringurd.j | |- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
|
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 9 | 6 7 8 | dfur2 | |- ( 1r ` R ) = ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 10 | 3 1 | eleqtrd | |- ( ph -> .1. e. ( Base ` R ) ) |
| 11 | 4 5 | jca | |- ( ( ph /\ x e. B ) -> ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) ) |
| 12 | 11 | ralrimiva | |- ( ph -> A. x e. B ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) ) |
| 13 | 2 | adantr | |- ( ( ph /\ x e. B ) -> .x. = ( .r ` R ) ) |
| 14 | 13 | oveqd | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = ( .1. ( .r ` R ) x ) ) |
| 15 | 14 | eqeq1d | |- ( ( ph /\ x e. B ) -> ( ( .1. .x. x ) = x <-> ( .1. ( .r ` R ) x ) = x ) ) |
| 16 | 13 | oveqd | |- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = ( x ( .r ` R ) .1. ) ) |
| 17 | 16 | eqeq1d | |- ( ( ph /\ x e. B ) -> ( ( x .x. .1. ) = x <-> ( x ( .r ` R ) .1. ) = x ) ) |
| 18 | 15 17 | anbi12d | |- ( ( ph /\ x e. B ) -> ( ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) <-> ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) |
| 19 | 1 18 | raleqbidva | |- ( ph -> ( A. x e. B ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) <-> A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) |
| 20 | 12 19 | mpbid | |- ( ph -> A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) |
| 21 | 1 | eleq2d | |- ( ph -> ( e e. B <-> e e. ( Base ` R ) ) ) |
| 22 | 13 | oveqd | |- ( ( ph /\ x e. B ) -> ( e .x. x ) = ( e ( .r ` R ) x ) ) |
| 23 | 22 | eqeq1d | |- ( ( ph /\ x e. B ) -> ( ( e .x. x ) = x <-> ( e ( .r ` R ) x ) = x ) ) |
| 24 | 13 | oveqd | |- ( ( ph /\ x e. B ) -> ( x .x. e ) = ( x ( .r ` R ) e ) ) |
| 25 | 24 | eqeq1d | |- ( ( ph /\ x e. B ) -> ( ( x .x. e ) = x <-> ( x ( .r ` R ) e ) = x ) ) |
| 26 | 23 25 | anbi12d | |- ( ( ph /\ x e. B ) -> ( ( ( e .x. x ) = x /\ ( x .x. e ) = x ) <-> ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 27 | 1 26 | raleqbidva | |- ( ph -> ( A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) <-> A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 28 | 21 27 | anbi12d | |- ( ph -> ( ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) <-> ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) ) |
| 29 | 4 | ralrimiva | |- ( ph -> A. x e. B ( .1. .x. x ) = x ) |
| 30 | 29 | adantr | |- ( ( ph /\ e e. B ) -> A. x e. B ( .1. .x. x ) = x ) |
| 31 | simpr | |- ( ( ph /\ e e. B ) -> e e. B ) |
|
| 32 | simpr | |- ( ( ( ph /\ e e. B ) /\ x = e ) -> x = e ) |
|
| 33 | 32 | oveq2d | |- ( ( ( ph /\ e e. B ) /\ x = e ) -> ( .1. .x. x ) = ( .1. .x. e ) ) |
| 34 | 33 32 | eqeq12d | |- ( ( ( ph /\ e e. B ) /\ x = e ) -> ( ( .1. .x. x ) = x <-> ( .1. .x. e ) = e ) ) |
| 35 | 31 34 | rspcdv | |- ( ( ph /\ e e. B ) -> ( A. x e. B ( .1. .x. x ) = x -> ( .1. .x. e ) = e ) ) |
| 36 | 30 35 | mpd | |- ( ( ph /\ e e. B ) -> ( .1. .x. e ) = e ) |
| 37 | 36 | adantrr | |- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> ( .1. .x. e ) = e ) |
| 38 | 3 | adantr | |- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> .1. e. B ) |
| 39 | simprr | |- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) |
|
| 40 | oveq2 | |- ( x = .1. -> ( e .x. x ) = ( e .x. .1. ) ) |
|
| 41 | id | |- ( x = .1. -> x = .1. ) |
|
| 42 | 40 41 | eqeq12d | |- ( x = .1. -> ( ( e .x. x ) = x <-> ( e .x. .1. ) = .1. ) ) |
| 43 | oveq1 | |- ( x = .1. -> ( x .x. e ) = ( .1. .x. e ) ) |
|
| 44 | 43 41 | eqeq12d | |- ( x = .1. -> ( ( x .x. e ) = x <-> ( .1. .x. e ) = .1. ) ) |
| 45 | 42 44 | anbi12d | |- ( x = .1. -> ( ( ( e .x. x ) = x /\ ( x .x. e ) = x ) <-> ( ( e .x. .1. ) = .1. /\ ( .1. .x. e ) = .1. ) ) ) |
| 46 | 45 | rspcva | |- ( ( .1. e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) -> ( ( e .x. .1. ) = .1. /\ ( .1. .x. e ) = .1. ) ) |
| 47 | 46 | simprd | |- ( ( .1. e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) -> ( .1. .x. e ) = .1. ) |
| 48 | 38 39 47 | syl2anc | |- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> ( .1. .x. e ) = .1. ) |
| 49 | 37 48 | eqtr3d | |- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> e = .1. ) |
| 50 | 49 | ex | |- ( ph -> ( ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) -> e = .1. ) ) |
| 51 | 28 50 | sylbird | |- ( ph -> ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) -> e = .1. ) ) |
| 52 | 51 | alrimiv | |- ( ph -> A. e ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) -> e = .1. ) ) |
| 53 | eleq1 | |- ( e = .1. -> ( e e. ( Base ` R ) <-> .1. e. ( Base ` R ) ) ) |
|
| 54 | oveq1 | |- ( e = .1. -> ( e ( .r ` R ) x ) = ( .1. ( .r ` R ) x ) ) |
|
| 55 | 54 | eqeq1d | |- ( e = .1. -> ( ( e ( .r ` R ) x ) = x <-> ( .1. ( .r ` R ) x ) = x ) ) |
| 56 | 55 | ovanraleqv | |- ( e = .1. -> ( A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) <-> A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) |
| 57 | 53 56 | anbi12d | |- ( e = .1. -> ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) <-> ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) ) |
| 58 | 57 | eqeu | |- ( ( .1. e. ( Base ` R ) /\ ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) /\ A. e ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) -> e = .1. ) ) -> E! e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 59 | 10 10 20 52 58 | syl121anc | |- ( ph -> E! e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 60 | 57 | iota2 | |- ( ( .1. e. B /\ E! e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) -> ( ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) <-> ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) = .1. ) ) |
| 61 | 3 59 60 | syl2anc | |- ( ph -> ( ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) <-> ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) = .1. ) ) |
| 62 | 10 20 61 | mpbi2and | |- ( ph -> ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) = .1. ) |
| 63 | 9 62 | eqtr2id | |- ( ph -> .1. = ( 1r ` R ) ) |