This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | 1 | fconst6 | ⊢ ( ℋ × { 0 } ) : ℋ ⟶ ℂ |
| 3 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 4 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 6 | c0ex | ⊢ 0 ∈ V | |
| 7 | 6 | fvconst2 | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = 0 ) |
| 8 | 5 7 | syl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = 0 ) |
| 9 | 6 | fvconst2 | ⊢ ( 𝑦 ∈ ℋ → ( ( ℋ × { 0 } ) ‘ 𝑦 ) = 0 ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑦 ∈ ℋ → ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = ( 𝑥 · 0 ) ) |
| 11 | mul01 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) | |
| 12 | 10 11 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = 0 ) |
| 13 | 6 | fvconst2 | ⊢ ( 𝑧 ∈ ℋ → ( ( ℋ × { 0 } ) ‘ 𝑧 ) = 0 ) |
| 14 | 12 13 | oveqan12d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) = ( 0 + 0 ) ) |
| 15 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 16 | 14 15 | eqtrdi | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) = 0 ) |
| 17 | 8 16 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) |
| 18 | 17 | 3impa | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) |
| 19 | 18 | rgen3 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) |
| 20 | ellnfn | ⊢ ( ( ℋ × { 0 } ) ∈ LinFn ↔ ( ( ℋ × { 0 } ) : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) ) | |
| 21 | 2 19 20 | mpbir2an | ⊢ ( ℋ × { 0 } ) ∈ LinFn |