This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcco.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rngcco.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rngcco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| rngcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| rngcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| rngcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| rngcco.f | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) | ||
| rngcco.g | ⊢ ( 𝜑 → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) | ||
| Assertion | rngcco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcco.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rngcco.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | rngcco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | rngcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | rngcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 6 | rngcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 7 | rngcco.f | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) | |
| 8 | rngcco.g | ⊢ ( 𝜑 → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) | |
| 9 | 1 2 3 | rngccofval | ⊢ ( 𝜑 → · = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 10 | 9 | oveqd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 𝑍 ) ) |
| 11 | 10 | oveqd | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 𝑍 ) 𝐹 ) ) |
| 12 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 13 | eqid | ⊢ ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) | |
| 17 | 12 2 13 4 5 6 14 15 16 7 8 | estrcco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 𝑍 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |
| 18 | 11 17 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |