This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsscmap.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rhmsscmap.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| Assertion | rhmsscmap2 | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsscmap.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rhmsscmap.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 3 | ssidd | ⊢ ( 𝜑 → 𝑅 ⊆ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) | |
| 6 | 4 5 | rhmf | ⊢ ( ℎ ∈ ( 𝑎 RingHom 𝑏 ) → ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) |
| 7 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) | |
| 8 | fvex | ⊢ ( Base ‘ 𝑏 ) ∈ V | |
| 9 | fvex | ⊢ ( Base ‘ 𝑎 ) ∈ V | |
| 10 | 8 9 | pm3.2i | ⊢ ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) |
| 11 | elmapg | ⊢ ( ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) | |
| 12 | 10 11 | mp1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 13 | 7 12 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) → ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 15 | 6 14 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑎 RingHom 𝑏 ) → ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 16 | 15 | ssrdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 RingHom 𝑏 ) ⊆ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 17 | ovres | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) = ( 𝑎 RingHom 𝑏 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) = ( 𝑎 RingHom 𝑏 ) ) |
| 19 | eqidd | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) | |
| 20 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑏 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑎 ) ) | |
| 22 | 20 21 | oveqan12rd | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 24 | simpl | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → 𝑎 ∈ 𝑅 ) | |
| 25 | simpr | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → 𝑏 ∈ 𝑅 ) | |
| 26 | ovexd | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ∈ V ) | |
| 27 | 19 23 24 25 26 | ovmpod | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → ( 𝑎 ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 29 | 16 18 28 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) ⊆ ( 𝑎 ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) ) |
| 30 | 29 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑅 ∀ 𝑏 ∈ 𝑅 ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) ⊆ ( 𝑎 ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) ) |
| 31 | rhmfn | ⊢ RingHom Fn ( Ring × Ring ) | |
| 32 | 31 | a1i | ⊢ ( 𝜑 → RingHom Fn ( Ring × Ring ) ) |
| 33 | inss1 | ⊢ ( Ring ∩ 𝑈 ) ⊆ Ring | |
| 34 | 2 33 | eqsstrdi | ⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
| 35 | xpss12 | ⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) | |
| 36 | 34 34 35 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
| 37 | fnssres | ⊢ ( ( RingHom Fn ( Ring × Ring ) ∧ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) | |
| 38 | 32 36 37 | syl2anc | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) |
| 39 | eqid | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) | |
| 40 | ovex | ⊢ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V | |
| 41 | 39 40 | fnmpoi | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) Fn ( 𝑅 × 𝑅 ) |
| 42 | 41 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) Fn ( 𝑅 × 𝑅 ) ) |
| 43 | incom | ⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) | |
| 44 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) ∈ V ) | |
| 45 | 1 44 | syl | ⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ∈ V ) |
| 46 | 43 45 | eqeltrid | ⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ∈ V ) |
| 47 | 2 46 | eqeltrd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 48 | 38 42 47 | isssc | ⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↔ ( 𝑅 ⊆ 𝑅 ∧ ∀ 𝑎 ∈ 𝑅 ∀ 𝑏 ∈ 𝑅 ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) ⊆ ( 𝑎 ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) ) ) ) |
| 49 | 3 30 48 | mpbir2and | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |