This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsscmap.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rhmsscmap.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| Assertion | rhmsscmap | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsscmap.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rhmsscmap.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 3 | inss2 | ⊢ ( Ring ∩ 𝑈 ) ⊆ 𝑈 | |
| 4 | 2 3 | eqsstrdi | ⊢ ( 𝜑 → 𝑅 ⊆ 𝑈 ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) | |
| 7 | 5 6 | rhmf | ⊢ ( ℎ ∈ ( 𝑎 RingHom 𝑏 ) → ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) |
| 8 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) | |
| 9 | fvex | ⊢ ( Base ‘ 𝑏 ) ∈ V | |
| 10 | fvex | ⊢ ( Base ‘ 𝑎 ) ∈ V | |
| 11 | 9 10 | pm3.2i | ⊢ ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) |
| 12 | elmapg | ⊢ ( ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) | |
| 13 | 11 12 | mp1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 14 | 8 13 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 15 | 14 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) → ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 16 | 7 15 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑎 RingHom 𝑏 ) → ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 RingHom 𝑏 ) ⊆ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 18 | ovres | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) = ( 𝑎 RingHom 𝑏 ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) = ( 𝑎 RingHom 𝑏 ) ) |
| 20 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) | |
| 21 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑏 ) ) | |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑎 ) ) | |
| 23 | 21 22 | oveqan12rd | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 25 | 4 | sseld | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝑅 → 𝑎 ∈ 𝑈 ) ) |
| 26 | 25 | com12 | ⊢ ( 𝑎 ∈ 𝑅 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 28 | 27 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → 𝑎 ∈ 𝑈 ) |
| 29 | 4 | sseld | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝑅 → 𝑏 ∈ 𝑈 ) ) |
| 30 | 29 | com12 | ⊢ ( 𝑏 ∈ 𝑅 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 32 | 31 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → 𝑏 ∈ 𝑈 ) |
| 33 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ∈ V ) | |
| 34 | 20 24 28 32 33 | ovmpod | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 35 | 17 19 34 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅 ) ) → ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) ⊆ ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) ) |
| 36 | 35 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑅 ∀ 𝑏 ∈ 𝑅 ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) ⊆ ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) ) |
| 37 | rhmfn | ⊢ RingHom Fn ( Ring × Ring ) | |
| 38 | 37 | a1i | ⊢ ( 𝜑 → RingHom Fn ( Ring × Ring ) ) |
| 39 | inss1 | ⊢ ( Ring ∩ 𝑈 ) ⊆ Ring | |
| 40 | 2 39 | eqsstrdi | ⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
| 41 | xpss12 | ⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) | |
| 42 | 40 40 41 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
| 43 | fnssres | ⊢ ( ( RingHom Fn ( Ring × Ring ) ∧ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) | |
| 44 | 38 42 43 | syl2anc | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) |
| 45 | eqid | ⊢ ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) | |
| 46 | ovex | ⊢ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V | |
| 47 | 45 46 | fnmpoi | ⊢ ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) Fn ( 𝑈 × 𝑈 ) |
| 48 | 47 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) Fn ( 𝑈 × 𝑈 ) ) |
| 49 | elex | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ V ) | |
| 50 | 1 49 | syl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 51 | 44 48 50 | isssc | ⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↔ ( 𝑅 ⊆ 𝑈 ∧ ∀ 𝑎 ∈ 𝑅 ∀ 𝑏 ∈ 𝑅 ( 𝑎 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑏 ) ⊆ ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 𝑏 ) ) ) ) |
| 52 | 4 36 51 | mpbir2and | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |