This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015) (Proof shortened by AV, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mhmima | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn | ⊢ ( 𝐹 “ 𝑋 ) ⊆ ran 𝐹 | |
| 2 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 4 | 2 3 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 6 | 5 | frnd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝑁 ) ) |
| 7 | 1 6 | sstrid | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ⊆ ( Base ‘ 𝑁 ) ) |
| 8 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝑁 ) = ( 0g ‘ 𝑁 ) | |
| 10 | 8 9 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
| 12 | 5 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 13 | 2 | submss | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑀 ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 15 | 8 | subm0cl | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑀 ) → ( 0g ‘ 𝑀 ) ∈ 𝑋 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 0g ‘ 𝑀 ) ∈ 𝑋 ) |
| 17 | fnfvima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) ∈ ( 𝐹 “ 𝑋 ) ) | |
| 18 | 12 14 16 17 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 19 | 11 18 | eqeltrrd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 0g ‘ 𝑁 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 20 | simpl | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) | |
| 21 | eqidd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) ) | |
| 22 | eqidd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) ) | |
| 23 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 24 | 23 | submcl | ⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 25 | 24 | 3adant1l | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 26 | 20 14 21 22 25 | mhmimalem | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 27 | mhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑁 ∈ Mnd ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑁 ∈ Mnd ) |
| 29 | eqid | ⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) | |
| 30 | 3 9 29 | issubm | ⊢ ( 𝑁 ∈ Mnd → ( ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ⊆ ( Base ‘ 𝑁 ) ∧ ( 0g ‘ 𝑁 ) ∈ ( 𝐹 “ 𝑋 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
| 31 | 28 30 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ⊆ ( Base ‘ 𝑁 ) ∧ ( 0g ‘ 𝑁 ) ∈ ( 𝐹 “ 𝑋 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
| 32 | 7 19 26 31 | mpbir3and | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ 𝑁 ) ) |