This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmima | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubRing ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) | |
| 2 | subrgsubg | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑀 ) → 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) | |
| 3 | ghmima | ⊢ ( ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) |
| 5 | eqid | ⊢ ( mulGrp ‘ 𝑀 ) = ( mulGrp ‘ 𝑀 ) | |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝑁 ) = ( mulGrp ‘ 𝑁 ) | |
| 7 | 5 6 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ) |
| 8 | 5 | subrgsubm | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑀 ) → 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑀 ) ) ) |
| 9 | mhmima | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑀 ) ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) |
| 11 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Ring ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → 𝑁 ∈ Ring ) |
| 13 | 6 | issubrg3 | ⊢ ( 𝑁 ∈ Ring → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRing ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) ) ) |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRing ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) ) ) |
| 15 | 4 10 14 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubRing ‘ 𝑁 ) ) |