This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmima | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubRing ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm | |- ( F e. ( M RingHom N ) -> F e. ( M GrpHom N ) ) |
|
| 2 | subrgsubg | |- ( X e. ( SubRing ` M ) -> X e. ( SubGrp ` M ) ) |
|
| 3 | ghmima | |- ( ( F e. ( M GrpHom N ) /\ X e. ( SubGrp ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
| 5 | eqid | |- ( mulGrp ` M ) = ( mulGrp ` M ) |
|
| 6 | eqid | |- ( mulGrp ` N ) = ( mulGrp ` N ) |
|
| 7 | 5 6 | rhmmhm | |- ( F e. ( M RingHom N ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) |
| 8 | 5 | subrgsubm | |- ( X e. ( SubRing ` M ) -> X e. ( SubMnd ` ( mulGrp ` M ) ) ) |
| 9 | mhmima | |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubMnd ` ( mulGrp ` M ) ) ) -> ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) |
| 11 | rhmrcl2 | |- ( F e. ( M RingHom N ) -> N e. Ring ) |
|
| 12 | 11 | adantr | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> N e. Ring ) |
| 13 | 6 | issubrg3 | |- ( N e. Ring -> ( ( F " X ) e. ( SubRing ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) ) ) |
| 14 | 12 13 | syl | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( ( F " X ) e. ( SubRing ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ ( F " X ) e. ( SubMnd ` ( mulGrp ` N ) ) ) ) ) |
| 15 | 4 10 14 | mpbir2and | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRing ` M ) ) -> ( F " X ) e. ( SubRing ` N ) ) |