This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmdvdsr.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| rhmdvdsr.m | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| rhmdvdsr.n | ⊢ / = ( ∥r ‘ 𝑆 ) | ||
| Assertion | rhmdvdsr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) / ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmdvdsr.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2 | rhmdvdsr.m | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | rhmdvdsr.n | ⊢ / = ( ∥r ‘ 𝑆 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∈ 𝑋 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | 1 6 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝑆 ) ) |
| 8 | 7 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝑆 ) ) |
| 9 | 4 5 8 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝑆 ) ) |
| 10 | simpll1 | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) ∧ 𝑐 ∈ 𝑋 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 11 | simpr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ∈ 𝑋 ) | |
| 12 | 7 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ) |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ) |
| 14 | 13 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ∀ 𝑐 ∈ 𝑋 ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ) |
| 15 | 5 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) ∧ 𝑐 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 16 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 17 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 18 | 1 16 17 | rhmmul | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑐 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 19 | 10 11 15 18 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 20 | 19 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ∀ 𝑐 ∈ 𝑋 ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 21 | simpr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∥ 𝐵 ) | |
| 22 | 1 2 16 | dvdsr2 | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∥ 𝐵 ↔ ∃ 𝑐 ∈ 𝑋 ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) ) |
| 23 | 22 | biimpac | ⊢ ( ( 𝐴 ∥ 𝐵 ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑐 ∈ 𝑋 ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) |
| 24 | 21 5 23 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ∃ 𝑐 ∈ 𝑋 ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) |
| 25 | r19.29 | ⊢ ( ( ∀ 𝑐 ∈ 𝑋 ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑐 ∈ 𝑋 ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) → ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) ) | |
| 26 | simpl | ⊢ ( ( ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) → ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) | |
| 27 | simpr | ⊢ ( ( ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) → ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) | |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) → ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 29 | 26 28 | eqtr3d | ⊢ ( ( ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) → ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 30 | 29 | reximi | ⊢ ( ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) → ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 31 | 25 30 | syl | ⊢ ( ( ∀ 𝑐 ∈ 𝑋 ( 𝐹 ‘ ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑐 ∈ 𝑋 ( 𝑐 ( .r ‘ 𝑅 ) 𝐴 ) = 𝐵 ) → ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 32 | 20 24 31 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 33 | r19.29 | ⊢ ( ( ∀ 𝑐 ∈ 𝑋 ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ∧ ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) ) | |
| 34 | 14 32 33 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) ) |
| 35 | oveq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑐 ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) | |
| 36 | 35 | eqeq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) ) |
| 37 | 36 | rspcev | ⊢ ( ( ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 38 | 37 | rexlimivw | ⊢ ( ∃ 𝑐 ∈ 𝑋 ( ( 𝐹 ‘ 𝑐 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 39 | 34 38 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ∃ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 40 | 6 3 17 | dvdsr | ⊢ ( ( 𝐹 ‘ 𝐴 ) / ( 𝐹 ‘ 𝐵 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝑆 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) ) |
| 41 | 9 39 40 | sylanbrc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ∥ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) / ( 𝐹 ‘ 𝐵 ) ) |