This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulf | ⊢ ·e : ( ℝ* × ℝ* ) ⟶ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) → 0 ∈ ℝ* ) |
| 3 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) → +∞ ∈ ℝ* ) |
| 5 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | a1i | ⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → -∞ ∈ ℝ* ) |
| 7 | xmullem | ⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → 𝑥 ∈ ℝ ) | |
| 8 | ancom | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ↔ ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) | |
| 9 | orcom | ⊢ ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) | |
| 10 | 9 | notbii | ⊢ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) |
| 11 | 8 10 | anbi12i | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) ) |
| 12 | orcom | ⊢ ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ↔ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) | |
| 13 | 12 | notbii | ⊢ ( ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) |
| 14 | 11 13 | anbi12i | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ↔ ( ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) ) |
| 15 | orcom | ⊢ ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ↔ ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ) ) | |
| 16 | 15 | notbii | ⊢ ( ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ) ) |
| 17 | xmullem | ⊢ ( ( ( ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ) ) → 𝑦 ∈ ℝ ) | |
| 18 | 14 16 17 | syl2anb | ⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → 𝑦 ∈ ℝ ) |
| 19 | 7 18 | remulcld | ⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 20 | 19 | rexrd | ⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ* ) |
| 21 | 6 20 | ifclda | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ∈ ℝ* ) |
| 22 | 4 21 | ifclda | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ∈ ℝ* ) |
| 23 | 2 22 | ifclda | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ∈ ℝ* ) |
| 24 | 23 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ∈ ℝ* |
| 25 | df-xmul | ⊢ ·e = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ) | |
| 26 | 25 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ∈ ℝ* ↔ ·e : ( ℝ* × ℝ* ) ⟶ ℝ* ) |
| 27 | 24 26 | mpbi | ⊢ ·e : ( ℝ* × ℝ* ) ⟶ ℝ* |