This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of restricted existential quantifiers. For a version based on fewer axioms see rexcom . (Contributed by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralcomf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| ralcomf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | rexcomf | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcomf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | ralcomf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | ancom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ) |
| 5 | 4 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ) |
| 6 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ) |
| 8 | 1 | r2exf | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) |
| 9 | 2 | r2exf | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ) |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |