This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted existential quantification. For a version based on fewer axioms see r2ex . (Contributed by Mario Carneiro, 14-Oct-2016) Use r2exlem . (Revised by Wolf Lammen, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r2exf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| Assertion | r2exf | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2exf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | 1 | r2alf | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝜑 ) ) |
| 3 | 2 | r2exlem | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) |