This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of restricted existential quantifiers. For a version based on fewer axioms see rexcom . (Contributed by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralcomf.1 | |- F/_ y A |
|
| ralcomf.2 | |- F/_ x B |
||
| Assertion | rexcomf | |- ( E. x e. A E. y e. B ph <-> E. y e. B E. x e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcomf.1 | |- F/_ y A |
|
| 2 | ralcomf.2 | |- F/_ x B |
|
| 3 | ancom | |- ( ( x e. A /\ y e. B ) <-> ( y e. B /\ x e. A ) ) |
|
| 4 | 3 | anbi1i | |- ( ( ( x e. A /\ y e. B ) /\ ph ) <-> ( ( y e. B /\ x e. A ) /\ ph ) ) |
| 5 | 4 | 2exbii | |- ( E. x E. y ( ( x e. A /\ y e. B ) /\ ph ) <-> E. x E. y ( ( y e. B /\ x e. A ) /\ ph ) ) |
| 6 | excom | |- ( E. x E. y ( ( y e. B /\ x e. A ) /\ ph ) <-> E. y E. x ( ( y e. B /\ x e. A ) /\ ph ) ) |
|
| 7 | 5 6 | bitri | |- ( E. x E. y ( ( x e. A /\ y e. B ) /\ ph ) <-> E. y E. x ( ( y e. B /\ x e. A ) /\ ph ) ) |
| 8 | 1 | r2exf | |- ( E. x e. A E. y e. B ph <-> E. x E. y ( ( x e. A /\ y e. B ) /\ ph ) ) |
| 9 | 2 | r2exf | |- ( E. y e. B E. x e. A ph <-> E. y E. x ( ( y e. B /\ x e. A ) /\ ph ) ) |
| 10 | 7 8 9 | 3bitr4i | |- ( E. x e. A E. y e. B ph <-> E. y e. B E. x e. A ph ) |