This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reusv2 . (Contributed by NM, 13-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv2lem4 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) | |
| 2 | anass | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ∧ 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) ) | |
| 3 | rabid | ⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ∧ 𝑥 = 𝐶 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ∧ 𝑥 = 𝐶 ) ) |
| 5 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) | |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 7 | 6 | anbi1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 8 | 7 | pm5.32ri | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ↔ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) |
| 9 | 5 8 | bitr3i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) ) |
| 11 | 2 4 10 | 3bitr4ri | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) ↔ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ∧ 𝑥 = 𝐶 ) ) |
| 12 | 11 | rexbii2 | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = 𝐶 ) |
| 13 | r19.42v | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) | |
| 14 | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } | |
| 15 | nfcv | ⊢ Ⅎ 𝑧 { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } | |
| 16 | nfv | ⊢ Ⅎ 𝑧 𝑥 = 𝐶 | |
| 17 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐶 | |
| 18 | 17 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 |
| 19 | csbeq1a | ⊢ ( 𝑦 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝐶 ↔ 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
| 21 | 14 15 16 18 20 | cbvrexfw | ⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = 𝐶 ↔ ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
| 22 | 12 13 21 | 3bitr3i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
| 23 | 22 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
| 24 | elex | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) → 𝐶 ∈ V ) |
| 26 | 3 25 | sylbi | ⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝐶 ∈ V ) |
| 27 | 26 | rgen | ⊢ ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝐶 ∈ V |
| 28 | nfv | ⊢ Ⅎ 𝑧 𝐶 ∈ V | |
| 29 | 17 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V |
| 30 | 19 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( 𝐶 ∈ V ↔ ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V ) ) |
| 31 | 14 15 28 29 30 | cbvralfw | ⊢ ( ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝐶 ∈ V ↔ ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V ) |
| 32 | 27 31 | mpbi | ⊢ ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V |
| 33 | reusv2lem3 | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V → ( ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) | |
| 34 | 32 33 | ax-mp | ⊢ ( ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
| 35 | df-ral | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) | |
| 36 | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) | |
| 37 | 14 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } |
| 38 | 37 18 | nfim | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
| 39 | eleq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ↔ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ) ) | |
| 40 | 39 20 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) ) |
| 41 | 36 38 40 | cbvalv1 | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
| 42 | 3 | imbi1i | ⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝐶 ) ) |
| 43 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) | |
| 44 | 42 43 | bitri | ⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) |
| 45 | 44 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) |
| 46 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) | |
| 47 | 45 46 | bitr4i | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
| 48 | 35 41 47 | 3bitr2i | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
| 49 | 48 | eubii | ⊢ ( ∃! 𝑥 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
| 50 | 34 49 | bitri | ⊢ ( ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
| 51 | 1 23 50 | 3bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |