This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reusv2 . (Contributed by NM, 14-Dec-2012) (Proof shortened by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv2lem3 | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V | |
| 3 | nfeu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 5 | euex | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 6 | rexn0 | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) | |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) |
| 8 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 9 | 8 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 10 | 5 7 9 | 3syl | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 12 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V | |
| 13 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
| 14 | 13 | nfeuw | ⊢ Ⅎ 𝑦 ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
| 15 | 12 14 | nfan | ⊢ Ⅎ 𝑦 ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 16 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( 𝑦 ∈ 𝐴 → 𝐵 ∈ V ) ) | |
| 17 | 16 | impcom | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ) → 𝐵 ∈ V ) |
| 18 | isset | ⊢ ( 𝐵 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐵 ) | |
| 19 | 17 18 | sylib | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ) → ∃ 𝑥 𝑥 = 𝐵 ) |
| 20 | 19 | adantrr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) → ∃ 𝑥 𝑥 = 𝐵 ) |
| 21 | rspe | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 22 | 21 | ex | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 23 | 22 | ancrd | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) ) |
| 24 | 23 | eximdv | ⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑥 𝑥 = 𝐵 → ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 = 𝐵 ) → ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) |
| 26 | 20 25 | syldan | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) → ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) |
| 27 | eupick | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) | |
| 28 | 1 26 27 | syl2an2 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) |
| 29 | 28 | ex | ⊢ ( 𝑦 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) ) |
| 30 | 29 | com3l | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( 𝑦 ∈ 𝐴 → 𝑥 = 𝐵 ) ) ) |
| 31 | 15 13 30 | ralrimd | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 32 | 11 31 | impbid | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 33 | 4 32 | eubid | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 34 | 1 33 | mpbird | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 35 | 34 | ex | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 36 | reusv2lem2 | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 37 | 35 36 | impbid1 | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |