This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reusv2 . (Contributed by NM, 4-Jan-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv2lem5 | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru | ⊢ ⊤ | |
| 2 | biimt | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → ( 𝑥 = 𝐶 ↔ ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝑥 = 𝐶 ↔ ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) ) |
| 4 | ibar | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝑥 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) | |
| 5 | 3 4 | bitr3d | ⊢ ( 𝐶 ∈ 𝐴 → ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 7 | 6 | pm5.32ri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) |
| 8 | 5 7 | bitr4di | ⊢ ( 𝐶 ∈ 𝐴 → ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
| 10 | ralbi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
| 12 | 11 | eubidv | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
| 13 | r19.28zv | ⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) ) | |
| 14 | 13 | eubidv | ⊢ ( 𝐵 ≠ ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) ) |
| 15 | 12 14 | sylan9bb | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) ) |
| 16 | 1 | biantrur | ⊢ ( 𝑥 = 𝐶 ↔ ( ⊤ ∧ 𝑥 = 𝐶 ) ) |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 ( ⊤ ∧ 𝑥 = 𝐶 ) ) |
| 18 | 17 | reubii | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( ⊤ ∧ 𝑥 = 𝐶 ) ) |
| 19 | reusv2lem4 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( ⊤ ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) | |
| 20 | 18 19 | bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) |
| 21 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) | |
| 22 | 15 20 21 | 3bitr4g | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |