This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for the unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 19-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eubid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| eubid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | eubid | ⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | eubid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 1 2 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
| 4 | eubi | ⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) ) |