This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reusv2 . (Contributed by NM, 27-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv2lem2 | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eunex | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ¬ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 2 | exnal | ⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 3 | 1 2 | sylib | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ¬ ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 4 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 5 | 4 | alrimiv | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 6 | 3 5 | nsyl3 | ⊢ ( 𝐴 = ∅ → ¬ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 7 | 6 | pm2.21d | ⊢ ( 𝐴 = ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 8 | simpr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 9 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 | |
| 10 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
| 11 | simpr | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) | |
| 12 | rspa | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 = 𝐵 ) | |
| 13 | 12 | adantr | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑧 = 𝐵 ) |
| 14 | 11 13 | eqtr4d | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝑧 ) |
| 15 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐵 ↔ 𝑧 = 𝐵 ) ) | |
| 16 | 15 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 17 | 16 | biimprcd | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( 𝑥 = 𝑧 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → ( 𝑥 = 𝑧 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 19 | 14 18 | mpd | ⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 20 | 19 | exp31 | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) ) |
| 21 | 9 10 20 | rexlimd | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 23 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 24 | 23 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 26 | 22 25 | impbid | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 27 | 26 | eubidv | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 28 | 27 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) ) |
| 29 | 28 | exlimdv | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑧 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) ) |
| 30 | euex | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 31 | 16 | cbvexvw | ⊢ ( ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑧 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) |
| 32 | 30 31 | sylib | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑧 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) |
| 33 | 29 32 | impel | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 34 | 8 33 | mpbird | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 35 | 34 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 36 | 7 35 | pm2.61ine | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |