This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuind.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| reuind.2 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | ||
| Assertion | reuind | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∃! 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuind.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | reuind.2 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 4 | 3 1 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 5 | 4 | cbvexvw | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) |
| 6 | r19.41v | ⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) | |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 8 | rexcom4 | ⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) | |
| 9 | risset | ⊢ ( 𝐵 ∈ 𝐶 ↔ ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ) | |
| 10 | 9 | anbi1i | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 12 | 7 8 11 | 3bitr4ri | ⊢ ( ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 13 | 5 12 | bitri | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 14 | eqeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) | |
| 15 | 14 | imim2i | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| 16 | biimpr | ⊢ ( ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) | |
| 17 | 16 | imim2i | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
| 18 | an31 | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) | |
| 19 | 18 | imbi1i | ⊢ ( ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → 𝑧 = 𝐴 ) ) |
| 20 | impexp | ⊢ ( ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) | |
| 21 | impexp | ⊢ ( ( ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → 𝑧 = 𝐴 ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) | |
| 22 | 19 20 21 | 3bitr3i | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 23 | 17 22 | sylib | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 24 | 15 23 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 25 | 24 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 26 | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) | |
| 27 | an12 | ⊢ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) | |
| 28 | eleq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 30 | 29 | pm5.32ri | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 31 | 27 30 | bitr4i | ⊢ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 32 | 31 | exbii | ⊢ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 33 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) | |
| 34 | 32 33 | bitri | ⊢ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 35 | 34 | imbi1i | ⊢ ( ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 36 | 26 35 | bitri | ⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 37 | 36 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ∀ 𝑥 ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 38 | 19.21v | ⊢ ( ∀ 𝑥 ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) | |
| 39 | 37 38 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 40 | 25 39 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 41 | 40 | expd | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( 𝑧 ∈ 𝐶 → ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) ) |
| 42 | 41 | reximdvai | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 43 | 13 42 | biimtrid | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 44 | 43 | imp | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |
| 45 | pm4.24 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) | |
| 46 | 45 | biimpi | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) |
| 47 | anim12 | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) ) ) | |
| 48 | eqtr3 | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) → 𝑧 = 𝑤 ) | |
| 49 | 46 47 48 | syl56 | ⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
| 50 | 49 | alanimi | ⊢ ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
| 51 | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ↔ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) | |
| 52 | 50 51 | sylib | ⊢ ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
| 53 | 52 | com12 | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 54 | 53 | a1d | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
| 55 | 54 | ralrimivv | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 56 | 55 | adantl | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 57 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐴 ↔ 𝑤 = 𝐴 ) ) | |
| 58 | 57 | imbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) ) |
| 59 | 58 | albidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) ) |
| 60 | 59 | reu4 | ⊢ ( ∃! 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
| 61 | 44 56 60 | sylanbrc | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∃! 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |