This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resttopon2 | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( J |`t A ) e. ( TopOn ` ( A i^i X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 2 | resttop | |- ( ( J e. Top /\ A e. V ) -> ( J |`t A ) e. Top ) |
|
| 3 | 1 2 | sylan | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( J |`t A ) e. Top ) |
| 4 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 5 | 4 | ineq2d | |- ( J e. ( TopOn ` X ) -> ( A i^i X ) = ( A i^i U. J ) ) |
| 6 | 5 | adantr | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( A i^i X ) = ( A i^i U. J ) ) |
| 7 | eqid | |- U. J = U. J |
|
| 8 | 7 | restuni2 | |- ( ( J e. Top /\ A e. V ) -> ( A i^i U. J ) = U. ( J |`t A ) ) |
| 9 | 1 8 | sylan | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( A i^i U. J ) = U. ( J |`t A ) ) |
| 10 | 6 9 | eqtrd | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( A i^i X ) = U. ( J |`t A ) ) |
| 11 | istopon | |- ( ( J |`t A ) e. ( TopOn ` ( A i^i X ) ) <-> ( ( J |`t A ) e. Top /\ ( A i^i X ) = U. ( J |`t A ) ) ) |
|
| 12 | 3 10 11 | sylanbrc | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( J |`t A ) e. ( TopOn ` ( A i^i X ) ) ) |