This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the property A passes to open subspaces, then a space is n-locally A iff it is locally A . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restlly.1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) | |
| Assertion | restnlly | ⊢ ( 𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restlly.1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) | |
| 2 | nllytop | ⊢ ( 𝑘 ∈ 𝑛-Locally 𝐴 → 𝑘 ∈ Top ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) → 𝑘 ∈ Top ) |
| 4 | nlly2i | ⊢ ( ( 𝑘 ∈ 𝑛-Locally 𝐴 ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) → ∃ 𝑠 ∈ 𝒫 𝑦 ∃ 𝑥 ∈ 𝑘 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) | |
| 5 | 4 | 3adant1l | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) → ∃ 𝑠 ∈ 𝒫 𝑦 ∃ 𝑥 ∈ 𝑘 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) |
| 6 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑥 ∈ 𝑘 ) | |
| 7 | simprr2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑥 ⊆ 𝑠 ) | |
| 8 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑠 ∈ 𝒫 𝑦 ) | |
| 9 | 8 | elpwid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑠 ⊆ 𝑦 ) |
| 10 | 7 9 | sstrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑥 ⊆ 𝑦 ) |
| 11 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝑦 ↔ 𝑥 ⊆ 𝑦 ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑥 ∈ 𝒫 𝑦 ) |
| 13 | 6 12 | elind | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ) |
| 14 | simprr1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝑥 ) | |
| 15 | simpll1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ) | |
| 16 | 15 2 | simpl2im | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑘 ∈ Top ) |
| 17 | restabs | ⊢ ( ( 𝑘 ∈ Top ∧ 𝑥 ⊆ 𝑠 ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( 𝑘 ↾t 𝑠 ) ↾t 𝑥 ) = ( 𝑘 ↾t 𝑥 ) ) | |
| 18 | 16 7 8 17 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( ( 𝑘 ↾t 𝑠 ) ↾t 𝑥 ) = ( 𝑘 ↾t 𝑥 ) ) |
| 19 | dfss2 | ⊢ ( 𝑥 ⊆ 𝑠 ↔ ( 𝑥 ∩ 𝑠 ) = 𝑥 ) | |
| 20 | 7 19 | sylib | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑥 ∩ 𝑠 ) = 𝑥 ) |
| 21 | elrestr | ⊢ ( ( 𝑘 ∈ Top ∧ 𝑠 ∈ 𝒫 𝑦 ∧ 𝑥 ∈ 𝑘 ) → ( 𝑥 ∩ 𝑠 ) ∈ ( 𝑘 ↾t 𝑠 ) ) | |
| 22 | 16 8 6 21 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑥 ∩ 𝑠 ) ∈ ( 𝑘 ↾t 𝑠 ) ) |
| 23 | 20 22 | eqeltrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑥 ∈ ( 𝑘 ↾t 𝑠 ) ) |
| 24 | eleq2 | ⊢ ( 𝑗 = ( 𝑘 ↾t 𝑠 ) → ( 𝑥 ∈ 𝑗 ↔ 𝑥 ∈ ( 𝑘 ↾t 𝑠 ) ) ) | |
| 25 | oveq1 | ⊢ ( 𝑗 = ( 𝑘 ↾t 𝑠 ) → ( 𝑗 ↾t 𝑥 ) = ( ( 𝑘 ↾t 𝑠 ) ↾t 𝑥 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑗 = ( 𝑘 ↾t 𝑠 ) → ( ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ↔ ( ( 𝑘 ↾t 𝑠 ) ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 27 | 24 26 | imbi12d | ⊢ ( 𝑗 = ( 𝑘 ↾t 𝑠 ) → ( ( 𝑥 ∈ 𝑗 → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝑘 ↾t 𝑠 ) → ( ( 𝑘 ↾t 𝑠 ) ↾t 𝑥 ) ∈ 𝐴 ) ) ) |
| 28 | 15 | simpld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝜑 ) |
| 29 | 1 | expr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑗 → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ( 𝑥 ∈ 𝑗 → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 31 | 28 30 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ∀ 𝑗 ∈ 𝐴 ( 𝑥 ∈ 𝑗 → ( 𝑗 ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 32 | simprr3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) | |
| 33 | 27 31 32 | rspcdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑥 ∈ ( 𝑘 ↾t 𝑠 ) → ( ( 𝑘 ↾t 𝑠 ) ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 34 | 23 33 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( ( 𝑘 ↾t 𝑠 ) ↾t 𝑥 ) ∈ 𝐴 ) |
| 35 | 18 34 | eqeltrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) |
| 36 | 13 14 35 | jca32 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) ∧ ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ∧ ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) ) |
| 37 | 36 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( 𝑥 ∈ 𝑘 ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ∧ ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) ) ) |
| 38 | 37 | reximdv2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ∃ 𝑥 ∈ 𝑘 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) ) |
| 39 | 38 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) → ( ∃ 𝑠 ∈ 𝒫 𝑦 ∃ 𝑥 ∈ 𝑘 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ ( 𝑘 ↾t 𝑠 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) ) |
| 40 | 5 39 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) → ∃ 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 41 | 40 | 3expb | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) ∧ ( 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 42 | 41 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) → ∀ 𝑦 ∈ 𝑘 ∀ 𝑢 ∈ 𝑦 ∃ 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) |
| 43 | islly | ⊢ ( 𝑘 ∈ Locally 𝐴 ↔ ( 𝑘 ∈ Top ∧ ∀ 𝑦 ∈ 𝑘 ∀ 𝑢 ∈ 𝑦 ∃ 𝑥 ∈ ( 𝑘 ∩ 𝒫 𝑦 ) ( 𝑢 ∈ 𝑥 ∧ ( 𝑘 ↾t 𝑥 ) ∈ 𝐴 ) ) ) | |
| 44 | 3 42 43 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴 ) → 𝑘 ∈ Locally 𝐴 ) |
| 45 | 44 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑛-Locally 𝐴 → 𝑘 ∈ Locally 𝐴 ) ) |
| 46 | 45 | ssrdv | ⊢ ( 𝜑 → 𝑛-Locally 𝐴 ⊆ Locally 𝐴 ) |
| 47 | llyssnlly | ⊢ Locally 𝐴 ⊆ 𝑛-Locally 𝐴 | |
| 48 | 47 | a1i | ⊢ ( 𝜑 → Locally 𝐴 ⊆ 𝑛-Locally 𝐴 ) |
| 49 | 46 48 | eqssd | ⊢ ( 𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴 ) |