This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restcnrm | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ CNrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | restin | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
| 3 | simpll | ⊢ ( ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ) → 𝐽 ∈ CNrm ) | |
| 4 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) → 𝑥 ⊆ ( 𝐴 ∩ ∪ 𝐽 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ) → 𝑥 ⊆ ( 𝐴 ∩ ∪ 𝐽 ) ) |
| 6 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ∪ 𝐽 ) ∈ V ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ) → ( 𝐴 ∩ ∪ 𝐽 ) ∈ V ) |
| 8 | restabs | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝑥 ⊆ ( 𝐴 ∩ ∪ 𝐽 ) ∧ ( 𝐴 ∩ ∪ 𝐽 ) ∈ V ) → ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ↾t 𝑥 ) = ( 𝐽 ↾t 𝑥 ) ) | |
| 9 | 3 5 7 8 | syl3anc | ⊢ ( ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ) → ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ↾t 𝑥 ) = ( 𝐽 ↾t 𝑥 ) ) |
| 10 | cnrmi | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ) → ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) | |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ) → ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) |
| 12 | 9 11 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ) → ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ↾t 𝑥 ) ∈ Nrm ) |
| 13 | 12 | ralrimiva | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ↾t 𝑥 ) ∈ Nrm ) |
| 14 | cnrmtop | ⊢ ( 𝐽 ∈ CNrm → 𝐽 ∈ Top ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → 𝐽 ∈ Top ) |
| 16 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 18 | inss2 | ⊢ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 19 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ ∪ 𝐽 ) ) ) | |
| 20 | 17 18 19 | sylancl | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
| 21 | iscnrm2 | ⊢ ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ ∪ 𝐽 ) ) → ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ↾t 𝑥 ) ∈ Nrm ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 ( 𝐴 ∩ ∪ 𝐽 ) ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ↾t 𝑥 ) ∈ Nrm ) ) |
| 23 | 13 22 | mpbird | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ CNrm ) |
| 24 | 2 23 | eqeltrd | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ CNrm ) |