This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resthaus and similar theorems. If the topological property A is preserved under injective preimages, then property A passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resthauslem.1 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | |
| resthauslem.2 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) : ( 𝑆 ∩ ∪ 𝐽 ) –1-1→ ( 𝑆 ∩ ∪ 𝐽 ) ∧ ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t 𝑆 ) Cn 𝐽 ) ) → ( 𝐽 ↾t 𝑆 ) ∈ 𝐴 ) | ||
| Assertion | resthauslem | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( 𝐽 ↾t 𝑆 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resthauslem.1 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | |
| 2 | resthauslem.2 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) : ( 𝑆 ∩ ∪ 𝐽 ) –1-1→ ( 𝑆 ∩ ∪ 𝐽 ) ∧ ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t 𝑆 ) Cn 𝐽 ) ) → ( 𝐽 ↾t 𝑆 ) ∈ 𝐴 ) | |
| 3 | simpl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → 𝐽 ∈ 𝐴 ) | |
| 4 | f1oi | ⊢ ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) : ( 𝑆 ∩ ∪ 𝐽 ) –1-1-onto→ ( 𝑆 ∩ ∪ 𝐽 ) | |
| 5 | f1of1 | ⊢ ( ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) : ( 𝑆 ∩ ∪ 𝐽 ) –1-1-onto→ ( 𝑆 ∩ ∪ 𝐽 ) → ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) : ( 𝑆 ∩ ∪ 𝐽 ) –1-1→ ( 𝑆 ∩ ∪ 𝐽 ) ) | |
| 6 | 4 5 | mp1i | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) : ( 𝑆 ∩ ∪ 𝐽 ) –1-1→ ( 𝑆 ∩ ∪ 𝐽 ) ) |
| 7 | inss2 | ⊢ ( 𝑆 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 8 | resabs1 | ⊢ ( ( 𝑆 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 → ( ( I ↾ ∪ 𝐽 ) ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) = ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( I ↾ ∪ 𝐽 ) ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) = ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) |
| 10 | 1 | adantr | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → 𝐽 ∈ Top ) |
| 11 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 13 | idcn | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( I ↾ ∪ 𝐽 ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( I ↾ ∪ 𝐽 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 15 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 16 | 15 | cnrest | ⊢ ( ( ( I ↾ ∪ 𝐽 ) ∈ ( 𝐽 Cn 𝐽 ) ∧ ( 𝑆 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( ( I ↾ ∪ 𝐽 ) ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t ( 𝑆 ∩ ∪ 𝐽 ) ) Cn 𝐽 ) ) |
| 17 | 14 7 16 | sylancl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( ( I ↾ ∪ 𝐽 ) ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t ( 𝑆 ∩ ∪ 𝐽 ) ) Cn 𝐽 ) ) |
| 18 | 9 17 | eqeltrrid | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t ( 𝑆 ∩ ∪ 𝐽 ) ) Cn 𝐽 ) ) |
| 19 | 15 | restin | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t ( 𝑆 ∩ ∪ 𝐽 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐽 ↾t 𝑆 ) Cn 𝐽 ) = ( ( 𝐽 ↾t ( 𝑆 ∩ ∪ 𝐽 ) ) Cn 𝐽 ) ) |
| 21 | 18 20 | eleqtrrd | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( I ↾ ( 𝑆 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t 𝑆 ) Cn 𝐽 ) ) |
| 22 | 3 6 21 2 | syl3anc | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( 𝐽 ↾t 𝑆 ) ∈ 𝐴 ) |