This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscnrm2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | iscnrm | ⊢ ( 𝐽 ∈ CNrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 4 | 3 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 6 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 7 | 6 | pweqd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 8 | 7 | raleqdv | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ↔ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 9 | 5 8 | bitr4d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |