This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | |- S = ( I mPoly R ) |
|
| ressmpl.h | |- H = ( R |`s T ) |
||
| ressmpl.u | |- U = ( I mPoly H ) |
||
| ressmpl.b | |- B = ( Base ` U ) |
||
| ressmpl.1 | |- ( ph -> I e. V ) |
||
| ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| ressmplbas2.w | |- W = ( I mPwSer H ) |
||
| ressmplbas2.c | |- C = ( Base ` W ) |
||
| ressmplbas2.k | |- K = ( Base ` S ) |
||
| Assertion | ressmplbas2 | |- ( ph -> B = ( C i^i K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | |- S = ( I mPoly R ) |
|
| 2 | ressmpl.h | |- H = ( R |`s T ) |
|
| 3 | ressmpl.u | |- U = ( I mPoly H ) |
|
| 4 | ressmpl.b | |- B = ( Base ` U ) |
|
| 5 | ressmpl.1 | |- ( ph -> I e. V ) |
|
| 6 | ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | ressmplbas2.w | |- W = ( I mPwSer H ) |
|
| 8 | ressmplbas2.c | |- C = ( Base ` W ) |
|
| 9 | ressmplbas2.k | |- K = ( Base ` S ) |
|
| 10 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 11 | 10 2 7 8 | subrgpsr | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> C e. ( SubRing ` ( I mPwSer R ) ) ) |
| 12 | 5 6 11 | syl2anc | |- ( ph -> C e. ( SubRing ` ( I mPwSer R ) ) ) |
| 13 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 14 | 13 | subrgss | |- ( C e. ( SubRing ` ( I mPwSer R ) ) -> C C_ ( Base ` ( I mPwSer R ) ) ) |
| 15 | 12 14 | syl | |- ( ph -> C C_ ( Base ` ( I mPwSer R ) ) ) |
| 16 | dfss2 | |- ( C C_ ( Base ` ( I mPwSer R ) ) <-> ( C i^i ( Base ` ( I mPwSer R ) ) ) = C ) |
|
| 17 | 15 16 | sylib | |- ( ph -> ( C i^i ( Base ` ( I mPwSer R ) ) ) = C ) |
| 18 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 19 | 2 18 | subrg0 | |- ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) |
| 20 | 6 19 | syl | |- ( ph -> ( 0g ` R ) = ( 0g ` H ) ) |
| 21 | 20 | breq2d | |- ( ph -> ( f finSupp ( 0g ` R ) <-> f finSupp ( 0g ` H ) ) ) |
| 22 | 21 | abbidv | |- ( ph -> { f | f finSupp ( 0g ` R ) } = { f | f finSupp ( 0g ` H ) } ) |
| 23 | 17 22 | ineq12d | |- ( ph -> ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) = ( C i^i { f | f finSupp ( 0g ` H ) } ) ) |
| 24 | 23 | eqcomd | |- ( ph -> ( C i^i { f | f finSupp ( 0g ` H ) } ) = ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) ) |
| 25 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 26 | 3 7 8 25 4 | mplbas | |- B = { f e. C | f finSupp ( 0g ` H ) } |
| 27 | dfrab3 | |- { f e. C | f finSupp ( 0g ` H ) } = ( C i^i { f | f finSupp ( 0g ` H ) } ) |
|
| 28 | 26 27 | eqtri | |- B = ( C i^i { f | f finSupp ( 0g ` H ) } ) |
| 29 | 1 10 13 18 9 | mplbas | |- K = { f e. ( Base ` ( I mPwSer R ) ) | f finSupp ( 0g ` R ) } |
| 30 | dfrab3 | |- { f e. ( Base ` ( I mPwSer R ) ) | f finSupp ( 0g ` R ) } = ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) |
|
| 31 | 29 30 | eqtri | |- K = ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) |
| 32 | 31 | ineq2i | |- ( C i^i K ) = ( C i^i ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) ) |
| 33 | inass | |- ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) = ( C i^i ( ( Base ` ( I mPwSer R ) ) i^i { f | f finSupp ( 0g ` R ) } ) ) |
|
| 34 | 32 33 | eqtr4i | |- ( C i^i K ) = ( ( C i^i ( Base ` ( I mPwSer R ) ) ) i^i { f | f finSupp ( 0g ` R ) } ) |
| 35 | 24 28 34 | 3eqtr4g | |- ( ph -> B = ( C i^i K ) ) |