This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| ressmpl.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| Assertion | ressmplbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 4 | ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | ressmpl.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 8 | eqid | ⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 11 | 1 2 3 4 5 6 8 9 10 | ressmplbas2 | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ) |
| 12 | inss2 | ⊢ ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ⊆ ( Base ‘ 𝑆 ) | |
| 13 | 11 12 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 14 | 7 10 | ressbas2 | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |