This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | ||
| mplval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| mplval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplbas.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| Assertion | mplbas | ⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 3 | mplval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | mplval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mplbas.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 6 | ssrab2 | ⊢ { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 | |
| 7 | eqid | ⊢ { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | |
| 8 | 1 2 3 4 7 | mplval | ⊢ 𝑃 = ( 𝑆 ↾s { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ) |
| 9 | 8 3 | ressbas2 | ⊢ ( { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 → { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = ( Base ‘ 𝑃 ) ) |
| 10 | 6 9 | ax-mp | ⊢ { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = ( Base ‘ 𝑃 ) |
| 11 | 5 10 | eqtr4i | ⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |