This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020) (Revised by AV, 3-Jul-2022) (Proof shortened by AV, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressval3d.r | ⊢ 𝑅 = ( 𝑆 ↾s 𝐴 ) | |
| ressval3d.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| ressval3d.e | ⊢ 𝐸 = ( Base ‘ ndx ) | ||
| ressval3d.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| ressval3d.f | ⊢ ( 𝜑 → Fun 𝑆 ) | ||
| ressval3d.d | ⊢ ( 𝜑 → 𝐸 ∈ dom 𝑆 ) | ||
| ressval3d.u | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | ||
| Assertion | ressval3d | ⊢ ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressval3d.r | ⊢ 𝑅 = ( 𝑆 ↾s 𝐴 ) | |
| 2 | ressval3d.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | ressval3d.e | ⊢ 𝐸 = ( Base ‘ ndx ) | |
| 4 | ressval3d.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | ressval3d.f | ⊢ ( 𝜑 → Fun 𝑆 ) | |
| 6 | ressval3d.d | ⊢ ( 𝜑 → 𝐸 ∈ dom 𝑆 ) | |
| 7 | ressval3d.u | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 8 | sspss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 9 | dfpss3 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) | |
| 10 | 9 | orbi1i | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 11 | 8 10 | bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 12 | simplr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → ¬ 𝐵 ⊆ 𝐴 ) | |
| 13 | 4 | adantl | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝑆 ∈ 𝑉 ) |
| 14 | simpl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) → 𝐴 ⊆ 𝐵 ) | |
| 15 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | 15 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 17 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
| 18 | 14 16 17 | syl2an | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝐴 ∈ V ) |
| 19 | 1 2 | ressval2 | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑆 ∈ 𝑉 ∧ 𝐴 ∈ V ) → 𝑅 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
| 20 | 12 13 18 19 | syl3anc | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝑅 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
| 21 | 3 | a1i | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝐸 = ( Base ‘ ndx ) ) |
| 22 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) | |
| 23 | 22 | biimpi | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 24 | 23 | eqcomd | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) → 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
| 27 | 21 26 | opeq12d | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 〈 𝐸 , 𝐴 〉 = 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) |
| 28 | 27 | eqcomd | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 = 〈 𝐸 , 𝐴 〉 ) |
| 29 | 28 | oveq2d | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
| 30 | 20 29 | eqtrd | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
| 32 | 1 | a1i | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑅 = ( 𝑆 ↾s 𝐴 ) ) |
| 33 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑆 ↾s 𝐴 ) = ( 𝑆 ↾s 𝐵 ) ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → ( 𝑆 ↾s 𝐴 ) = ( 𝑆 ↾s 𝐵 ) ) |
| 35 | 4 | adantl | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑆 ∈ 𝑉 ) |
| 36 | 2 | ressid | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 37 | 35 36 | syl | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 38 | 32 34 37 | 3eqtrd | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑅 = 𝑆 ) |
| 39 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 40 | 3 6 | eqeltrrid | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 ) |
| 41 | 39 4 5 40 | setsidvald | ⊢ ( 𝜑 → 𝑆 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑆 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) ) |
| 43 | 3 | a1i | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝐸 = ( Base ‘ ndx ) ) |
| 44 | simpl | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝐴 = 𝐵 ) | |
| 45 | 44 2 | eqtrdi | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 46 | 43 45 | opeq12d | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 〈 𝐸 , 𝐴 〉 = 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) |
| 47 | 46 | eqcomd | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 = 〈 𝐸 , 𝐴 〉 ) |
| 48 | 47 | oveq2d | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
| 49 | 38 42 48 | 3eqtrd | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
| 50 | 49 | ex | ⊢ ( 𝐴 = 𝐵 → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
| 51 | 31 50 | jaoi | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∨ 𝐴 = 𝐵 ) → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
| 52 | 11 51 | sylbi | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
| 53 | 7 52 | mpcom | ⊢ ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |