This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rennim | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∉ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 5 | rpre | ⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( i · 𝐴 ) ∈ ℝ ) | |
| 6 | rereb | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ) ) | |
| 7 | 5 6 | imbitrid | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ+ → ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( i · 𝐴 ) ∈ ℝ+ → ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ) ) |
| 9 | 4 | addlidd | ⊢ ( 𝐴 ∈ ℝ → ( 0 + ( i · 𝐴 ) ) = ( i · 𝐴 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( 0 + ( i · 𝐴 ) ) ) = ( ℜ ‘ ( i · 𝐴 ) ) ) |
| 11 | 0re | ⊢ 0 ∈ ℝ | |
| 12 | crre | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ℜ ‘ ( 0 + ( i · 𝐴 ) ) ) = 0 ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( 0 + ( i · 𝐴 ) ) ) = 0 ) |
| 14 | 10 13 | eqtr3d | ⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( i · 𝐴 ) ) = 0 ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ↔ 0 = ( i · 𝐴 ) ) ) |
| 16 | 8 15 | sylibd | ⊢ ( 𝐴 ∈ ℝ → ( ( i · 𝐴 ) ∈ ℝ+ → 0 = ( i · 𝐴 ) ) ) |
| 17 | rpne0 | ⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( i · 𝐴 ) ≠ 0 ) | |
| 18 | 17 | necon2bi | ⊢ ( ( i · 𝐴 ) = 0 → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 19 | 18 | eqcoms | ⊢ ( 0 = ( i · 𝐴 ) → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 20 | 16 19 | syl6 | ⊢ ( 𝐴 ∈ ℝ → ( ( i · 𝐴 ) ∈ ℝ+ → ¬ ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 21 | 20 | pm2.01d | ⊢ ( 𝐴 ∈ ℝ → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 22 | df-nel | ⊢ ( ( i · 𝐴 ) ∉ ℝ+ ↔ ¬ ( i · 𝐴 ) ∈ ℝ+ ) | |
| 23 | 21 22 | sylibr | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∉ ℝ+ ) |