This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sin restricted to reals is continuous from reals to reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resincncf | ⊢ ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinf | ⊢ sin : ℂ ⟶ ℂ | |
| 2 | ffn | ⊢ ( sin : ℂ ⟶ ℂ → sin Fn ℂ ) | |
| 3 | 1 2 | ax-mp | ⊢ sin Fn ℂ |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | fnssres | ⊢ ( ( sin Fn ℂ ∧ ℝ ⊆ ℂ ) → ( sin ↾ ℝ ) Fn ℝ ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( sin ↾ ℝ ) Fn ℝ |
| 7 | fvres | ⊢ ( 𝑥 ∈ ℝ → ( ( sin ↾ ℝ ) ‘ 𝑥 ) = ( sin ‘ 𝑥 ) ) | |
| 8 | resincl | ⊢ ( 𝑥 ∈ ℝ → ( sin ‘ 𝑥 ) ∈ ℝ ) | |
| 9 | 7 8 | eqeltrd | ⊢ ( 𝑥 ∈ ℝ → ( ( sin ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ ) |
| 10 | 9 | rgen | ⊢ ∀ 𝑥 ∈ ℝ ( ( sin ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ |
| 11 | ffnfv | ⊢ ( ( sin ↾ ℝ ) : ℝ ⟶ ℝ ↔ ( ( sin ↾ ℝ ) Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( ( sin ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ ) ) | |
| 12 | 6 10 11 | mpbir2an | ⊢ ( sin ↾ ℝ ) : ℝ ⟶ ℝ |
| 13 | sincn | ⊢ sin ∈ ( ℂ –cn→ ℂ ) | |
| 14 | rescncf | ⊢ ( ℝ ⊆ ℂ → ( sin ∈ ( ℂ –cn→ ℂ ) → ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) ) | |
| 15 | 4 13 14 | mp2 | ⊢ ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) |
| 16 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) → ( ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ↔ ( sin ↾ ℝ ) : ℝ ⟶ ℝ ) ) | |
| 17 | 4 15 16 | mp2an | ⊢ ( ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ↔ ( sin ↾ ℝ ) : ℝ ⟶ ℝ ) |
| 18 | 12 17 | mpbir | ⊢ ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) |