This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a constant is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | addccncf2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝑥 ) ) | |
| Assertion | addccncf2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addccncf2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝑥 ) ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ⊆ ℂ ) | |
| 3 | simpr | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 4 | ssidd | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ℂ ⊆ ℂ ) | |
| 5 | 2 3 4 | constcncfg | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 6 | ssid | ⊢ ℂ ⊆ ℂ | |
| 7 | cncfmptid | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 10 | 5 9 | addcncf | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝑥 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 11 | 1 10 | eqeltrid | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |