This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sin restricted to reals is continuous from reals to reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resincncf | |- ( sin |` RR ) e. ( RR -cn-> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinf | |- sin : CC --> CC |
|
| 2 | ffn | |- ( sin : CC --> CC -> sin Fn CC ) |
|
| 3 | 1 2 | ax-mp | |- sin Fn CC |
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | fnssres | |- ( ( sin Fn CC /\ RR C_ CC ) -> ( sin |` RR ) Fn RR ) |
|
| 6 | 3 4 5 | mp2an | |- ( sin |` RR ) Fn RR |
| 7 | fvres | |- ( x e. RR -> ( ( sin |` RR ) ` x ) = ( sin ` x ) ) |
|
| 8 | resincl | |- ( x e. RR -> ( sin ` x ) e. RR ) |
|
| 9 | 7 8 | eqeltrd | |- ( x e. RR -> ( ( sin |` RR ) ` x ) e. RR ) |
| 10 | 9 | rgen | |- A. x e. RR ( ( sin |` RR ) ` x ) e. RR |
| 11 | ffnfv | |- ( ( sin |` RR ) : RR --> RR <-> ( ( sin |` RR ) Fn RR /\ A. x e. RR ( ( sin |` RR ) ` x ) e. RR ) ) |
|
| 12 | 6 10 11 | mpbir2an | |- ( sin |` RR ) : RR --> RR |
| 13 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 14 | rescncf | |- ( RR C_ CC -> ( sin e. ( CC -cn-> CC ) -> ( sin |` RR ) e. ( RR -cn-> CC ) ) ) |
|
| 15 | 4 13 14 | mp2 | |- ( sin |` RR ) e. ( RR -cn-> CC ) |
| 16 | cncfcdm | |- ( ( RR C_ CC /\ ( sin |` RR ) e. ( RR -cn-> CC ) ) -> ( ( sin |` RR ) e. ( RR -cn-> RR ) <-> ( sin |` RR ) : RR --> RR ) ) |
|
| 17 | 4 15 16 | mp2an | |- ( ( sin |` RR ) e. ( RR -cn-> RR ) <-> ( sin |` RR ) : RR --> RR ) |
| 18 | 12 17 | mpbir | |- ( sin |` RR ) e. ( RR -cn-> RR ) |