This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rennim | |- ( A e. RR -> ( _i x. A ) e/ RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 4 | 1 2 3 | sylancr | |- ( A e. RR -> ( _i x. A ) e. CC ) |
| 5 | rpre | |- ( ( _i x. A ) e. RR+ -> ( _i x. A ) e. RR ) |
|
| 6 | rereb | |- ( ( _i x. A ) e. CC -> ( ( _i x. A ) e. RR <-> ( Re ` ( _i x. A ) ) = ( _i x. A ) ) ) |
|
| 7 | 5 6 | imbitrid | |- ( ( _i x. A ) e. CC -> ( ( _i x. A ) e. RR+ -> ( Re ` ( _i x. A ) ) = ( _i x. A ) ) ) |
| 8 | 4 7 | syl | |- ( A e. RR -> ( ( _i x. A ) e. RR+ -> ( Re ` ( _i x. A ) ) = ( _i x. A ) ) ) |
| 9 | 4 | addlidd | |- ( A e. RR -> ( 0 + ( _i x. A ) ) = ( _i x. A ) ) |
| 10 | 9 | fveq2d | |- ( A e. RR -> ( Re ` ( 0 + ( _i x. A ) ) ) = ( Re ` ( _i x. A ) ) ) |
| 11 | 0re | |- 0 e. RR |
|
| 12 | crre | |- ( ( 0 e. RR /\ A e. RR ) -> ( Re ` ( 0 + ( _i x. A ) ) ) = 0 ) |
|
| 13 | 11 12 | mpan | |- ( A e. RR -> ( Re ` ( 0 + ( _i x. A ) ) ) = 0 ) |
| 14 | 10 13 | eqtr3d | |- ( A e. RR -> ( Re ` ( _i x. A ) ) = 0 ) |
| 15 | 14 | eqeq1d | |- ( A e. RR -> ( ( Re ` ( _i x. A ) ) = ( _i x. A ) <-> 0 = ( _i x. A ) ) ) |
| 16 | 8 15 | sylibd | |- ( A e. RR -> ( ( _i x. A ) e. RR+ -> 0 = ( _i x. A ) ) ) |
| 17 | rpne0 | |- ( ( _i x. A ) e. RR+ -> ( _i x. A ) =/= 0 ) |
|
| 18 | 17 | necon2bi | |- ( ( _i x. A ) = 0 -> -. ( _i x. A ) e. RR+ ) |
| 19 | 18 | eqcoms | |- ( 0 = ( _i x. A ) -> -. ( _i x. A ) e. RR+ ) |
| 20 | 16 19 | syl6 | |- ( A e. RR -> ( ( _i x. A ) e. RR+ -> -. ( _i x. A ) e. RR+ ) ) |
| 21 | 20 | pm2.01d | |- ( A e. RR -> -. ( _i x. A ) e. RR+ ) |
| 22 | df-nel | |- ( ( _i x. A ) e/ RR+ <-> -. ( _i x. A ) e. RR+ ) |
|
| 23 | 21 22 | sylibr | |- ( A e. RR -> ( _i x. A ) e/ RR+ ) |